Highlights d B cells obtained from the fetal-maternal interface gain memory during gestation d Unsupervised analysis shows B cell subsets with marker expression unique to the uterus d Decidual B cells are able to secrete IL-10 d Clusters of decidual B cells also contain T cells, including Foxp3 pos T cells
A strong bias related to age is observed in COVID-19 patients with pediatric subjects developing a milder disease than adults. We hypothesized that a specific SARS-CoV-2 effect conjugated with preexisting differences in the immune systems may explain this. Using flow cytometry, we investigated basal immune differences in a cohort consisting of 16 non-infected young and 16 aged individuals and further leveraged an in vitro whole blood model of SARS-CoV-2 infection so that functional differences could be mined as well. In short, blood diluted in culture media was incubated 5 or 24 h with the trimeric spike protein or controls. Following unsupervised analysis, we first confirmed that the immune lymphoid and myeloid systems in adults are less efficient and prone to develop higher inflammation than those in children. We notably identified in adults a higher CD43 lymphocyte expression, known for its potentially inhibitory role. The spike protein induced different responses between adults and children, notably a higher increase of inflammatory markers together with lower monocyte and B cell activation in adults. Interestingly, CD169, a CD43 ligand overexpressed in COVID-19 patients, was confirmed to be strongly modulated by the spike protein. In conclusion, the spike protein exacerbated the preexisting lower immune responsiveness and higher inflammatory potential in adults. Altogether, some of the markers identified may explain the marked age bias and be predictive of severity.
TNF is a key cytokine in autoimmune diseases like rheumatoid arthritis, and TNF antagonists are commonly prescribed therapeutics. Although anti-TNF drugs have enabled a very significant progress in this field, disease heterogeneity remains and causes diversity in patient response. These challenges increase the need for anti-TNF characterization tools that may open perspectives toward the development of personalized medicine. In this study, we present a novel whole blood-based flow cytometry functional assay that allows, within a given whole blood sample, the characterization of an anti-TNF molecule mechanisms of action. Whole blood from healthy human donors was employed to mimic the physiological state but also to streamline experimental workflows. Samples were incubated with LPS alone or in combination with various anti-TNF molecules such as adalimumab (ADA), etanercept (ETA), and infliximab. A 10-color flow cytometry panel including CD69, transmembrane TNF, CD16, CD62L, CD66b, CD11b, and CD54 as activation markers was used following a centrifugation-free protocol. CD69 expression decreased on NK, NKT, and T cells upon treatment with ADA, ETA, and IFX as a direct indication of forward signaling neutralization. Percentages of transmembrane TNF + monocytes increased after incubation when using ADA or IFX but not ETA, revealing the potential of the two first molecules to trigger reverse signaling. Ab-dependent cell cytotoxicity was informed by CD16 and CD69 expressions in some donors that showed increasing levels of CD16 2 CD69 + NK cells when incubated with anti-TNFs. This study proposes a novel approach to assess anti-TNF mechanisms of action and provides a path toward capturing donor heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.