Cluster root (CR) is one of the most spectacular plant developmental adaptations to hostile environment. It can be found in a few species from a dozen botanical families, including white lupin (Lupinus albus) in the Fabaceae family. These amazing structures are produced in phosphate‐deprived conditions and are made of hundreds of short roots also known as rootlets. White lupin is the only crop bearing CRs and is considered as the model species for CR studies. However, little information is available on CRs atypical development, including the molecular events that trigger their formation. To provide insights on CR formation, we performed an anatomical and cellular description of rootlet development in white lupin. Starting with a classic histological approach, we described rootlet primordium development and defined eight developmental stages from rootlet initiation to their emergence. Due to the major role of hormones in the developmental program of root system, we next focussed on auxin‐related mechanisms. We observed the establishment of an auxin maximum through rootlet development in transgenic roots expressing the DR5:GUS auxin reporter. Expression analysis of the main auxin‐related genes [TIR, Auxin Response Factor (ARF) and AUX/IAA] during a detailed time course revealed specific expression associated with the formation of the rootlet primordium. We showed that L. albus TRANSPORT INHIBITOR RESPONSE 1b is expressed during rootlet primordium formation and that L. albus AUXIN RESPONSE FACTOR 5 is expressed in the vasculature but absent in the primordium itself. Altogether, our results describe the very early cellular events leading to CR formation and reveal some of the auxin‐related mechanisms.
Secondary root emergence is a crucial trait that shapes the plants underground system. Virtually every developmental step of root primordium morphogenesis is controlled by auxin. However, how the hormone controls cell separation in primordium-overlaying tissues through wall loosening is poorly understood. Here, we took advantage of white lupin and its spectacular cluster root development to assess the contribution of auxin to this process. We show that auxin positive role on rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes. Downregulation of a pectinolytic enzyme gene expressed in cells surrounding the primordium resulted in delayed emergence. Pectins were demethylesterified in the emergence zone and auxin treatment further enhanced this effect. Additionally, we report specific rhamnogalacturonan-I modifications during cortical cell separation. In conclusion, we propose a model in which auxin has a dual role during rootlet emergence: Firstly, through active pectin demethylesterification and secondly by regulating the expression of cell wall remodeling enzymes.
SUMMARY Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan‐I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.