One of the most remarkable observations regarding volatile elements in the solar system is the depletion of N in the bulk silicate Earth (BSE) relative to chondrites, leading to a particularly high and non-chondritic C:N ratio. The N depletion may reflect large-scale differentiation events such as sequestration in Earth's core or massive blow off of Earth's early atmosphere, or alternatively the characteristics of a late-added volatile-rich veneer. As the behavior of N during early planetary differentiation processes is poorly constrained, we determined together the partitioning of N and C between Fe-N-C metal alloy and two different silicate melts (a terrestrial and a martian basalt). Conditions spanned a range of f O2 from IW-0.4 to IW-3.5 at 1.2 to 3 GPa, and 1400ºC or 1600ºC, where IW is the logarithmic difference between experimental f O2 and that imposed by the coexistence of crystalline Fe and wüstite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.