Bacterial cytochrome c peroxidases contain an electron transferring (E) heme domain and a peroxidatic (P) heme domain. All but one of these enzymes are isolated in an inactive oxidized state and require reduction of the E heme by a small redox donor protein in order to activate the P heme. Here we present the structures of the inactive oxidized and active mixed valence enzyme from Paracoccus pantotrophus. Chain flexibility in the former, as expressed by the crystallographic temperature factors, is strikingly distributed in certain loop regions, and these coincide with the regions of conformational change that occur in forming the active mixed valence enzyme. On the basis of these changes, we postulate a series of events that occur to link the trigger of the electron entering the E heme from either pseudoazurin or cytochrome c(550) and the dissociation of a coordinating histidine at the P heme, which allows substrate access.
The locations of cytochrome c peroxidase and catalase activities in the two Gram-negative bacteria Pseudomonas stutzeri (N.C.I.B. 9721) and Paracoccus denitrificans (N.C.I.B. 8944) were investigated by the production of spheroplasts. In both species the cytochrome c peroxidase was predominantly periplasmic: 92% of total activity in Ps. stutzeri and 98% of nonmembrane-bound activity in Pa. denitrificans were found in this cellular compartment. In contrast, the catalase was mostly in the cytoplasmic fraction. Purification of the Pa. denitrificans cytochrome c peroxidase showed it to be the haem c-containing polypeptide of Mr 42,000 that has already been described by Bosma, Braster, Stouthamer & Van Versefeld [(1987) Eur. J. Biochem. 165, 665-670] but was not identified by them as a peroxidase. The visible-absorption spectra of the enzyme closely resemble those of cytochrome c peroxidase from Pseudomonas aeruginosa but the donor specificity is different, with the Pa. denitrificans enzyme preferring the basic mitochondrial cytochromes c to the acidic cytochromes c-551 and reacting well with the Pa. denitrificans cytochrome c-550.
The cytochrome c peroxidase of Paracoccus denitrificans is similar to the well-studied enzyme from Pseudomonas aeruginosa. Like the Pseudomonas enzyme, the Paracoccus peroxidase contains two haem c groups, one high potential and one low potential. The high-potential haem acts as a source of the second electron for H2O2 reduction, and the low-potential haem acts as a peroxidatic centre. Reduction with ascorbate of the high-potential haem of the Paracoccus enzyme results in a switch of the low-potential haem to a high-spin state, as shown by visible and n.m.r. spectroscopy. This high-spin haem of the mixed-valence enzyme is accessible to ligands and binds CN- with a KD of 5 microM. The Paracoccus enzyme is significantly different from that from Pseudomonas in the time course of high-spin formation after reduction of the high-potential haem, and in the requirement for bivalent cations. Reduction with 1 mM ascorbate at pH 6 is complete within 2 min, and this is followed by a slow appearance of the high-spin state with a half-time of 10 min. Thus the process of reduction and spin state change can be easily separated in time and the intermediate form obtained. This separation is also evident in e.p.r. spectra, although the slow change involves an alteration in the low-spin ligation at this temperature rather than a change in spin state. The separation is even more striking at pH 7.5, where no high-spin form is obtained until 1 mM Ca2+ is added to the mixed-valence enzyme. The spin-state switch of the low-potential haem shifts the midpoint redox potential of the high-potential haem by 50 mV, a further indication of haem-haem interaction.
In work that is complementary to our investigation of the spectroscopic features of the cytochrome c peroxidase from Paracoccus denitrificans [Gilmour, Goodhew, Pettigrew, Prazeres, Moura and Moura (1993) Biochem. J. 294, 745-752], we have studied the kinetics of oxidation of cytochrome c by this enzyme. The enzyme, as isolated, is in the fully oxidized form and is relatively inactive. Reduction of the high-potential haem at pH 6 with ascorbate results in partial activation of the enzyme. Full activation is achieved by addition of 1 mM CaCl2. Enzyme activation is associated with formation of a high-spin state at the oxidized low-potential haem. EGTA treatment of the oxidized enzyme prevents activation after reduction with ascorbate, while treatment with EGTA of the reduced, partially activated, form abolishes the activity. We conclude that the active enzyme is a mixed-valence form with the low-potential haem in a high-spin state that is stabilized by Ca2+. Dilution of the enzyme results in a progressive loss of activity, the extent of which depends on the degree of dilution. Most of the activity lost upon dilution can be recovered after reconcentration. The M(r) of the enzyme on molecular-exclusion chromatography is concentration-dependent, with a shift to lower values at lower concentrations. Values of M(r) obtained are intermediate between those of a monomer (39,565) and a dimer. We propose that the active form of the enzyme is a dimer which dissociates at high dilution to give inactive monomers. From the activity of the enzyme at different dilutions, a KD of 0.8 microM can be calculated for the monomerdimer equilibrium. The cytochrome c peroxidase oxidizes horse ferrocytochrome c with first-order kinetics, even at high ferrocytochrome c concentrations. The maximal catalytic-centre activity ('turnover number') under the assay conditions used is 62,000 min-1, with a half-saturating ferrocytochrome c concentration of 3.3 microM. The corresponding values for the Paracoccus cytochrome c-550 (presumed to be the physiological substrate) are 85,000 min-1 and 13 microM. However, in this case, the kinetics deviate from first-order progress curves at all ferrocytochrome c concentrations. Consideration of the periplasmic environment in Paracoccus denitrificans leads us to propose that the enzyme will be present as the fully active dimer supplied with saturating ferrocytochrome c-550.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.