Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.
Various chemical adjuvants are available to augment immune responses to non-replicative, subunit vaccines. Optimized adjuvant selection can ensure that vaccine-induced immune responses protect against the diversity of pathogen-associated infection routes, mechanisms of infectious spread, and pathways of immune evasion. In this study, we compare the immune response of mice to a subunit vaccine of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) spike protein, stabilized in its prefusion conformation by a proprietary molecular clamp (MERS SClamp) alone or formulated with one of six adjuvants: either (i) aluminium hydroxide, (ii) SWE, a squalene-in-water emulsion, (iii) SQ, a squalene-in-water emulsion containing QS21 saponin, (iv) SMQ, a squalene-in-water emulsion containing QS21 and a synthetic toll-like receptor 4 (TLR4) agonist 3D-6-acyl Phosphorylated HexaAcyl Disaccharide (3D6AP); (v) LQ, neutral liposomes containing cholesterol, 1.2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and QS21, (vi) or LMQ, neutral liposomes containing cholesterol, DOPC, QS21, and 3D6AP. All adjuvanted formulations induced elevated antibody titers which where greatest for QS21-containing formulations. These had elevated neutralization capacity and induced higher frequencies of IFNƔ and IL-2-producing CD4+ and CD8+ T cells. Additionally, LMQ-containing formulations skewed the antibody response towards IgG2b/c isotypes, allowing for antibody-dependent cellular cytotoxicity. This study highlights the utility of side-by-side adjuvant comparisons in vaccine development.
Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.