The chaotic diffusion for a family of Hamiltonian mappings whose angles diverge in the limit of vanishingly action is investigated by using the solution of the diffusion equation. The system is described by a two-dimensional mapping for the variables action, I, and angle, θ and controlled by two control parameters: (i) ǫ, controlling the nonlinearity of the system, particularly a transition from integrable for ǫ = 0 to non-integrable for ǫ = 0 and; (ii) γ denoting the power of the action in the equation defining the angle. For ǫ = 0 the phase space is mixed and chaos is present in the system leading to a finite diffusion in the action characterized by the solution of the diffusion equation. The analytical solution is then compared to the numerical simulations showing a remarkable agreement between the two procedures.
The scaling invariance for chaotic orbits near a transition from limited to unlimited diffusion in a dissipative standard mapping is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle with a specific action at a given time. We show the diffusion coefficient varies slowly with the time and is responsible for suppressing the unlimited diffusion. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach and, as a bonus, a scaling for intermediate time is obtained as dependent on the initial action. The formalism presented is robust enough and can be applied in a variety of other systems including time-dependent billiards near a transition from limited to unlimited Fermi acceleration as we show at the end of the letter and in many other systems under the presence of dissipation as well as near a transition from integrability to non-integrability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.