Robotic endovascular systems have been successfully used to treat a wide range of pathologies including endovascular aneurysm repairs, uterine artery embolizations, and cardiac electrophysiology ablations. Limited research suggests that the use of robotic systems may help to achieve a more accurate manipulation and increased steerability of the catheter during endovascular procedures. In addition, robotic systems have also been designed to enhance image-guided percutaneous procedures, demonstrating a potential to facilitate needle placements and guidance and diminish radiation exposure risk. There are still many limitations for the widespread of this emerging technology. More studies are needed to validate the use of robotic systems and to show meaningful clinical advantages over traditional methods as well as assessing cost-effectiveness.
In-vivo validation on animal setting of a pneumatically propelled robot for endovascular intervention, to determine safety and clinical advantage of robotic cannulations compared to manual operation. Methods: Robotic assistance and image-guided intervention are increasingly used for improving endovascular procedures with enhanced navigation dexterity and accuracy. However, most platforms developed in the past decade still present inherent limitations in terms of altered clinical workflow, counterintuitive human-robot interaction, and a lack of versatility. We have created a versatile, highly integrated platform for robot-assisted endovascular intervention aimed at addressing such limitations, and here we demonstrate its clinical usability through in-vivo animal trials. A detailed in-vivo study on four porcine models conducted with our robotic platform is reported, involving cannulation and balloon angioplasty of five target arteries. Results: The trials showed a 100% success rate, and postmortem histopathological assessment demonstrated a reduction in the incidence and severity of vessel trauma with robotic navigation versus manual manipulation. Conclusion: In-vivo experiments demonstrated that the applicability of our robotic system within the context of this study was well tolerated, with good feasibility, and low risk profile. Comparable results were observed with robotics and manual cannulation, with clinical outcome potentially in favor of robotics. Significance: This study showed that the proposed robotic platform can potentially improve the execution of endovascular procedures, paving the way for clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.