The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state fMRI data (n = 601, 6–85 years) and examined the interactions between age and brain dynamics among three neurocognitive networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network, L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions, moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.
Brain connectivity studies of autism spectrum disorder (ASD) have historically relied on static measures of functional connectivity. Recent work has focused on identifying transient configurations of brain activity, yet several open questions remain regarding the nature of specific brain network dynamics in ASD. We used a dynamic co-activation pattern (CAP) approach to investigate the salience/midcingulo-insular (M-CIN) network, a locus of dysfunction in ASD, in a large multi-site resting-state fMRI dataset collected from 172 children (ages 6-13 years; n = 75 ASD; n = 138 male). Following brain parcellation using independent component analysis, dynamic CAP analyses were conducted and k-means clustering was used to determine transient activation patterns of the M-CIN. The frequency of occurrence of different dynamic CAP brain states was then compared between children with ASD and typically developing (TD) children. Dynamic brain configurations characterized by co-activation of the M-CIN with central executive/lateral frontoparietal and default mode/medial frontoparietal networks appeared less frequently in children with ASD compared with TD children. This study highlights the utility of time-varying approaches for studying altered M-CIN function in prevalent neurodevelopmental disorders. We speculate that altered M-CIN dynamics in ASD may underlie the inflexible behaviors commonly observed in children with the disorder.
Highlights Children with autism spectrum disorder (ASD) showed altered brain dynamics during the later stages of an attention task. Brain dynamics during rest in both ASD and in typically developing children was associated with social ability. Brain dynamics show the potential to index individual differences in social cognition and behavior.
While much progress has been made toward understanding the neurobiology of social and communication deficits associated with autism spectrum disorder (ASD), less is known regarding the neurobiological basis of restricted and repetitive behaviors (RRBs) central to the ASD diagnosis. Symptom severity for RRBs in ASD is associated with cognitive inflexibility. Thus, understanding the neural mechanisms underlying cognitive inflexibility in ASD is critical for tailoring therapies to treat this understudied yet pervasive symptom. Here we used a set‐shifting paradigm adopted from the developmental cognitive neuroscience literature involving flexible switching between stimulus categories to examine task performance and neural responses in children with ASD. Behaviorally, we found little evidence for group differences in performance on the set‐shifting task. Compared with typically developing children, children with ASD exhibited greater activation of the parahippocampal gyrus during performance on trials requiring switching. These findings suggest that children with ASD may need to recruit memory‐based neural systems to a greater degree when learning to flexibly associate stimuli with responses. Lay Summary Children with autism often struggle to behave in a flexible way when faced with unexpected challenges. We examined brain responses during a task thought to involve flexible thinking and found that compared with typically developing children, those with autism relied more on brain areas involved in learning and memory to complete the task. This study helps us to understand what types of cognitive tasks are best suited for exploring the neural basis of cognitive flexibility in children with autism. Autism Res 2020, 13: 1501–1515. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Autism spectrum disorder (ASD) is associated with marked heterogeneity with respect to the development of executive function abilities. The ‘bilingual advantage’ refers to the observation that individuals who speak two languages perform better on executive function tasks than monolinguals under some circumstances. There is not yet consensus, however, as to whether this advantage can be reliably demonstrated, nor is there consensus regarding under which conditions it emerges. Bilingual and monolingual children with ASD have comparable developmental outcomes, particularly in the areas of core ASD symptoms, cognitive function, and language. Still, despite the potential advantages that bilingualism may confer, clinicians commonly advise against providing a bilingual environment for children with ASD. The purpose of the present review is to provide an up-to-date assessment of the limited literature on bilingualism in children with ASD in order to inform evidence-based practice. Studies suggest a potential bilingual advantage in ASD in the areas of nonverbal intelligence quotient, adaptive functioning, and expressive vocabulary. A limited yet growing literature provides preliminary evidence for enhanced executive function ability in some children with ASD. Taken together, current evidence suggests that although a ‘bilingual advantage’ may not be universally present in typical development, it may manifest under specific circumstances, conferring advantage for populations in which executive function is compromised. Further work is needed to develop consistent, evidence-based guidelines around language recommendations for families of children with ASD and to better understand the cognitive and brain mechanisms giving rise to the bilingual advantage in clinical developmental populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.