The exponential growth of documents in the web makes it very hard for researchers to be aware of the relevant work being done within the scientific community. The task of efficiently retrieving information has therefore become an important research topic. The objective of this study is to test how the efficiency of the text classification changes if different weights are previously assigned to the sections that compose the documents. The proposal takes into account the place (section) where terms are located in the document, and each section has a weight that can be modified depending on the corpus. To carry out the study, an extended version of the OHSUMED corpus with full documents have been created. Through the use of WEKA, we compared the use of abstracts only with that of full texts, as well as the use of section weighing combinations to assess their significance in the scientific article classification process using the SMO (Sequential Minimal Optimization), the WEKA Support Vector Machine (SVM) algorithm implementation. The experimental results show that the proposed combinations of the preprocessing techniques and feature selection achieve promising results for the task of full text scientific document classification. We also have evidence to conclude that enriched datasets with text from certain sections achieve better results than using only titles and abstracts.
Multi-view ensemble learning exploits the information of data views. To test its efficiency for full text classification, a technique has been implemented where the views correspond to the document sections. For classification and prediction, we use a stacking generalization based on the idea that different learning algorithms provide complementary explanations of the data. The present study implements the stacking approach using support vector machine algorithms as the baseline and a C4.5 implementation as the meta-learner. Views are created with OHSUMED biomedical full text documents. Experimental results lead to the sustained conclusion that the application of multi-view techniques to full texts significantly improves the task of text classification, providing a significant contribution for the biomedical text mining research. We also have evidence to conclude that enriched datasets with text from certain sections are better than using only titles and abstracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.