Chromosomal instability (CIN) is a major hallmark of human cancer and might contribute to tumorigenesis. Genes required for the normal progression of mitosis represent potential CIN genes and, as such, are important tumour suppressors. The Chk2 kinase and its downstream targets p53 and Brca1 are tumour suppressors that have been functionally linked to the DNA damage response pathway. Here, we report a function of Chk2, independent of p53 and DNA damage, that is required for proper progression of mitosis, and for the maintenance of chromosomal stability in human somatic cells. Depletion of Chk2 or abrogation of its kinase activity causes abnormal mitotic spindle assembly associated with a delay in mitosis, which promotes the generation of lagging chromosomes, chromosome missegregation and CIN, while still allowing survival and growth. Furthermore, we have identified Brca1 as a mitotic target of the Chk2 kinase in the absence of DNA damage. Accordingly, loss of BRCA1 or its Chk2-mediated phosphorylation leads to spindle formation defects and CIN. Thus, the CHK2-BRCA1 tumour suppressor pathway is required for chromosomal stability, which might contribute to their tumour suppressor function.
Treatment of cells with microtubule inhibitors results in activation of the mitotic spindle assembly checkpoint, leading to mitotic arrest before anaphase. Upon prolonged treatment, however, cells can adapt and exit mitosis aberrantly, resulting in the occurrence of tetraploid cells in G1. Those cells subsequently arrest in postmitotic G1 due to the activation of a p53-dependent G1 checkpoint. Failure of the G1 checkpoint leads to endoreduplication and further polyploidization. Using HCT116 and isogenic p53-deficient or spindle checkpoint compromised derivatives, we show here that not only p53 but also a functional spindle assembly checkpoint is required for postmitotic G1 checkpoint function. During transient mitotic arrest, p53 stabilization and activation is triggered by a pathway independent of ATM/ATR, Chk1 and Chk2. We further show that a prolonged spindle checkpoint-mediated mitotic arrest is required for proper postmitotic G1 checkpoint function. In addition, we demonstrate that polyploid cells are inhibited to re-enter mitosis by an additional checkpoint acting in G2. Thus, during a normal cell cycle, polyploidization and subsequent aneuploidization is prevented by the function of the mitotic spindle checkpoint, a p53-dependent G1 checkpoint and an additional G2 checkpoint.
The mitotic spindle assembly checkpoint ensures proper chromosome segregation during mitosis by inhibiting the onset of anaphase until all kinetochores are attached to the mitotic spindle and tension across the kinetochores is generated. Here, we report that the stable partial downregulation of the spindle checkpoint gene MAD1, which is observed in human cancer, leads to a functional inactivation of the spindle checkpoint resulting in gross aneuploidy. Interestingly, although Mad1 is thought to act as a kinetochore based activator of Mad2 during checkpoint activation, we show that normal levels of Mad2, but not of Mad1, are required for preventing premature sister chromatid separation and for maintaining the timing of an undisturbed mitosis, suggesting a Mad1 independent function of Mad2 that operates independent of its checkpoint function. Most significantly, a partial repression of either MAD1 or MAD2 confers resistance to nocodazole, a drug that inhibits microtubule attachment. In contrast, sensitivity to clinically relevant drugs like taxol or monastrol that inhibit the generation of tension across kinetochores is not modulated by partial downregulation of MAD1, suggesting a functional bifurcation of spindle checkpoint dependent apoptotic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.