Uranium (U)-tolerant aerobic chemo-heterotrophic bacteria were isolated from the sub-surface soils of U-rich deposits in Domiasiat, North East India. The bacterial community explored at molecular level by amplified ribosomal DNA restriction analysis (ARDRA) resulted in 51 distinct phylotypes. Bacterial community assemblages at the U mining site with the concentration of U ranging from 20 to 100 ppm, were found to be most diverse. Representative bacteria analysed by 16S rRNA gene sequencing were affiliated to Firmicutes (51%), Gammaproteobacteria (26%), Actinobacteria (11%), Bacteroidetes (10%) and Betaproteobacteria (2%). Representative strains removed more than 90% and 53% of U from 100 μM and 2 mM uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure and the activity was retained until 24 h. Overall, 76% of characterized isolates possessed phosphatase enzyme and 53% had PIB-type ATPase genes. This study generated baseline information on the diverse indigenous U-tolerant bacteria which could serve as an indicator to estimate the environmental impact expected to be caused by mining in the future. Also, these natural isolates efficient in uranium binding and harbouring phosphatase enzyme and metal-transporting genes could possibly play a vital role in the bioremediation of metal-/radionuclide-contaminated environments.
Enrichment-based methods targeted at uranium-tolerant populations among the culturable, aerobic, chemo-heterotrophic bacteria from the subsurface soils of Domiasiat (India's largest sandstone-type uranium deposits, containing an average ore grade of 0.1 % U(3)O(8)), indicated a wide occurrence of Serratia marcescens. Five representative S. marcescens isolates were characterized by a polyphasic taxonomic approach. The phylogenetic analyses of 16S rRNA gene sequences showed their relatedness to S. marcescens ATCC 13880 (≥99.4% similarity). Biochemical characteristics and random amplified polymorphic DNA profiles revealed significant differences among the representative isolates and the type strain as well. The minimum inhibitory concentration for uranium U(VI) exhibited by these natural isolates was found to range from 3.5-4.0 mM. On evaluation for their uranyl adsorption properties, it was found that all these isolates were able to remove nearly 90-92% (21-22 mg/L) and 60-70% (285-335 mg/L) of U(VI) on being challenged with 100 μM (23.8 mg/L) and 2 mM (476 mg/L) uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure. his capacity was retained by the isolates even after 24 h of incubation. Viability tests confirmed the tolerance of these isolates to toxic concentrations of soluble uranium U(VI) at pH 3.5. This is among the first studies to report uranium-tolerant aerobic chemoheterotrophs obtained from the pristine uranium ore-bearing site of Domiasiat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.