Abstract. Real-time systems are notoriously difficult to design and implement, and, as many real-time problems are safety-critical, their solutions must be reliable as well as efficient and correct. While higher-level programming models (such as the Real-Time Specification for Java) permit real-time programmers to use language features that most programmers take for granted (objects, type checking, dynamic dispatch, and memory safety) the compromises required for real-time execution, especially concerning memory allocation, can create as many problems as they solve. This paper presents Scoped Types and Aspects for Real-Time Systems (STARS) a novel programming model for real-time systems. Scoped Types give programmers a clear model of their programs' memory use, and, being statically checkable, prevent the run-time memory errors that bedevil models such as RTSJ. Our Aspects build on Scoped Types guarantees so that Real-Time concerns can be completely separated from applications' base code. Adopting the integrated Scoped Types and Aspects approach can significantly improve both the quality and performance of a real-time Java systems, resulting in simpler systems that are reliable, efficient, and correct.
Abstract. Real-time systems are notoriously difficult to design and implement, and, as many real-time problems are safety-critical, their solutions must be reliable as well as efficient and correct. While higher-level programming models (such as the Real-Time Specification for Java) permit real-time programmers to use language features that most programmers take for granted (objects, type checking, dynamic dispatch, and memory safety) the compromises required for real-time execution, especially concerning memory allocation, can create as many problems as they solve. This paper presents Scoped Types and Aspects for Real-Time Systems (STARS) a novel programming model for real-time systems. Scoped Types give programmers a clear model of their programs' memory use, and, being statically checkable, prevent the run-time memory errors that bedevil the RTSJ. Adopting the integrated Scoped Types and Aspects approach can significantly improve both the quality and performance of a real-time Java systems, resulting in simpler systems that are reliable, efficient, and correct.
Virtual machine (VM) implementations are made of intricately intertwined subsystems, interacting largely through implicit dependencies. As the degree of crosscutting present in VMs is very high, VM implementations exhibit significant internal complexity. This paper proposes an architecture approach for VMs that regards a VM as a composite of service modules coordinated through explicit bidirectional interfaces. Aspect-oriented programming techniques are used to establish these interfaces, to coordinate module interaction, and to declaratively express concrete VM architectures. A VM architecture description language is presented in a case study, illustrating the application of the proposed architectural principles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.