Background
Increased inflammation has been well defined in COVID-19, while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases and acute respiratory distress syndrome (ARDS), a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets.
Methods
Blood was obtained serially from critically ill COVID-19 patients for eleven days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis and cytokine levels were assessed. Lung tissue was obtained immediately post-mortem for immunostaining. Pubmed searches for neutrophils, lung and COVID-19 yielded ten peer-reviewed research articles in English.
Results
Elevations in neutrophil-associated cytokines IL-8 and IL-6, and general inflammatory cytokines IP-10, GM-CSF, IL-1b, IL-10 and TNF, were identified both at first measurement and across hospitalization (p<0.0001). COVID neutrophils had exaggerated oxidative burst (p<0.0001), NETosis (p<0.0001) and phagocytosis (p<0.0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of SARS-CoV-2 infected lungs available for examination (2 out of 5). While elevations in IL-8 and ANC correlated with disease severity, plasma IL-8 levels alone correlated with death.
Conclusions
Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data shows that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.
Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH deyhydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared to those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and non-survivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision making in critically ill subjects with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.