For the purpose of a industrial process of cellulosic ethanol production, an efficient β-glucosidase was evolved by L-Shuffling starting from three parental genes (i.e., Chaetomium globosum glucosidase putative gene, Trichoderma reesei bgl1 gene, and Neurospora crassa glucosidase putative gene, named genes A, B, and C, respectively) originating from microbial biodiversity and showing 70% of identity at the amino acid level. Enzyme B (encoded by bgl1 gene) was chosen as a reference so that the backbone of the evolved enzymes would be based on this enzyme. Two rounds of L-Shuffling and colonies screening (20,000 colonies per round) on chromogenic glucose substrate were performed. Compared with native β-glucosidase, the most evolved enzyme has a 242-fold increased k cat for the pNPGlc substrate. After expression of this improved β-glucosidase in T. reesei, a new efficient enzymatic cocktail was secreted by the strain allowing for a 4-fold decrease in cellulase loading without any loss in hydrolysis performance of degradation of a steam-exploded wheat straw compared to the untransformed parental strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.