The utilization of physical organic molecular descriptors for the quantitative description of reaction outcomes in multivariate linear regression models is demonstrated as an effective tool for a priori prediction and mechanistic interrogation.
The effects of aryl ring ortho-, meta-, and para-substitution on site selectivity and enantioselectivity were investigated in the following reactions: (1) enantioselective Pd-catalyzed redox-relay Heck reaction of arylboronic acids, (2) Pd-catalyzed β-aryl elimination of triarylmethanols, and (3) benzoylformate decarboxylase-catalyzed enantioselective benzoin condensation of benzaldehydes. Through these studies, it is demonstrated that the electronic and steric effects of various substituents on selectivities obtained in these reactions can be described by NBO charges, the IR carbonyl stretching frequency, and Sterimol values of various substituted benzoic acids. An extended compilation of NBO charges and IR carbonyl stretching frequencies of various substituted benzoic acids was used as an alternative to Hammett values. These parameters provide a correlative tool that allows for the analysis of a much greater range of substituent effects because they can also account for proximal and remote steric effects.
A broad series of fully characterized, well-defined silica-supported W metathesis catalysts with the general formula [(≡SiO)W(═NAr)(═CHCMe2R)(X)] (Ar = 2,6-iPr2C6H3 (AriPr), 2,6-Cl2C6H3 (ArCl), 2-CF3C6H4 (ArCF3), and C6F5 (ArF5); X = OC(CF3)3 (OtBuF9), OCMe(CF3)2 (OtBuF6), OtBu, OSi(OtBu)3, 2,5-dimethylpyrrolyl (Me2Pyr) and R = Me or Ph) was prepared by grafting bis-X substituted complexes [W(NAr)(═CHCMe2R)(X)2] on silica partially dehydroxylated at 700 °C (SiO2-(700)), and their activity was evaluated with the goal to obtain detailed structure-activity relationships. Quantitative influence of the ligand set on the activity (turnover frequency, TOF) in self-metathesis of cis-4-nonene was investigated using multivariate linear regression analysis tools. The TOF of these catalysts (activity) can be well predicted from simple steric and electronic parameters of the parent protonated ligands; it is described by the mutual contribution of the NBO charge of the nitrogen or the IR intensity of the symmetric N-H stretch of the ArNH2, corresponding to the imido ligand, together with the Sterimol B5 and pKa of HX, representing the X ligand. This quantitative and predictive structure-activity relationship analysis of well-defined heterogeneous catalysts shows that high activity is associated with the combination of X and NAr ligands of opposite electronic character and paves the way toward rational development of metathesis catalysts.
An enantioselective, intermolecular dehydrogenative Heck arylation of trisubstituted alkenes to construct remote quaternary stereocenters has been developed. Using a new chiral pyridine oxazoline ligand, good to high enantioselectivity is achieved for various combinations of indole derivatives and trisubstituted alkenes. However, some combinations of substrates led to lower enantioselectivity, which provided the impetus to use structure enantioselectivity correlations to design a better performing ligand.
The applicability of computational descriptors extracted from metal pyridine-oxazoline complexes to relate both site and enantioselectivity to structural diversity was investigated. A group of computationally derived features (e.g., metal NBO charges, steric descriptors, torsion angles) were acquired for a library of pyridine-oxazoline ligands. Correlation studies were employed to examine steric/electronic features described by each descriptor, followed by application of the said descriptors in modeling the results of two reaction types, the site-selective redox-relay Heck reaction and the enantioselective Carroll rearrangement, affording simple, well-validated models. Through experimental validation and extrapolation, parameters derived from ground state metal complexes were found to be advantageous over those from the free ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.