This paper presents and evaluates an inverse model for estimating ammonia emission from agricultural land. The method is based on an analytical model derived from the advection-diffusion equation, assuming power law profiles for wind speed and diffusivity. A three-dimensional model and a two-dimensional model are evaluated. The hypotheses of flux-driven or concentration-driven emissions are also tested. The model is evaluated against three datasets covering a range of ammonia fluxes, field geometry/size and measurement techniques. The sensitivity and the uncertainty of the method is also evaluated with a MonteCarlo approach, as well as based on existing datasets. Finally, the capability of the method to work with time-integrated concentrations (e.g. using diffusive concentration samplers) is also evaluated. The inverse model gives estimations of the ammonia emissions within a few per cent of the measurements. Moreover, the method is mainly sensitive to the concentration, the friction velocity and the thermal stratification of the atmosphere. The two-dimensional approaches give similar results to the three-dimensional one, provided the field is large enough. The concentration-driven hypothesis is similar to the flux-driven hypothesis for a fetch greater than approximately 20 m. The results are discussed in comparison with the previous approaches: the Theoretical Profile Shape (TPS or Zinst approach) and the backward Lagrangian Stochastic model (BLS).
Croplands mainly act as net sources of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O), as well as nitrogen oxide (NO), a precursor of troposheric ozone. We determined the carbon (C) and nitrogen (N) balance of a four-year crop rotation, including maize, wheat, barley and mustard, to provide a base for exploring mitigation options of net emissions. The crop rotation had a positive net ecosystem production (NEP) of 4.4 +/- 0.7 Mg C ha(-1) y(-1) but represented a net source of carbon with a net biome production (NBP) of -1.3 +/- 1.1 Mg C ha(-1) y(-1). The nitrogen balance of the rotation was correlated with the carbon balance and resulted in net loss (-24 +/- 28 kg N ha(-1) y(-1)). The main nitrogen losses were nitrate leaching (-11.7 +/- 1.0 kg N ha(-1) y(-1)) and ammonia volatilization (-9 kg N ha(-1) y(-1)). Dry and wet depositions were 6.7 +/- 3.0 and 5.9 +/- 0.1 kg N ha(-1) y(-1), respectively. Fluxes of nitrous (N2O) and nitric (NO) oxides did not contribute significantly to the N budget (N2O: -1.8 +/- 0.04; NO: -0.7 +/- 0.04 kg N ha(-1) y(-1)) but N2O fluxes equaled 16% of the total greenhouse gas balance. The link between the carbon and nitrogen balances are discussed. Longer term experiments would be necessary to capture the trends in the carbon and nitrogen budgets within the variability of agricultural ecosystems
Abstract. Ammonia concentration and fluxes were measured above a growing triticale field for two months during May and June 2010 at the NitroEurope crop site in Grignon (Fr-Gri) near Paris, France. The measurement campaign started 15 days following a 40 kg N ha −1 application of an ammonium nitrate solution. A new mini-wedd (Wet Effluent Denuder) flow injection analyser with three channels (ROSAA, RObust and Sensitive Ammonia Analyser) was used to measure NH 3 fluxes using the aerodynamic gradient method. The measured ammonia concentrations varied from 0.01 to 39 µg NH 3 m −3 and were largely influenced by advection from the nearby farm. The ammonia fluxes ranged from -560 to 220 ng NH 3 m −2 s −1 and averaged -29 ng NH 3 m −2 s −1 . During some periods the large deposition fluxes could only be explained by a very small surface resistance, which may be partly due to the high concentrations of certain acid gases (HNO 3 and SO 2 ) observed in this suburban area. Ammonia emissions were also observed. The canopy compensation point C c was around 1.5 µg NH 3 m −3 on average. The canopy emission potential c (C c normalised for the temperature response of the Henry equilibrium) decreased over the course of the measurement campaign from c = 2200 to c = 450, the latter value being close to the median stomatal emission potential ( s ) and lower than the median ground emission potential ( g ) for managed ecosystems reported in the literature. The temporal dynamics of the measured NH 3 flux compared well with the Surfatm-NH 3 model using fitted parameters. The subjectivity of the model fitting is discussed based on a sensitivity analysis.
We used various approaches to establish a comprehensive budget of methane (CH4) emissions from the Seine basin, including direct emissions from livestock and soils as well as emissions from the drainage network. For the direct emissions from livestock, we used official livestock census numbers and emission factors (CH4 emitted by each animal species per head per year) available in the literature. For the emissions from soils, we based our estimates on experimental measurements in closed chambers installed on different agricultural plots, forest, and grasslands in 2008 and 2009. The results were extrapolated to the whole Seine basin, including grassland, cropland, and forest soil distributions in the Seine basin. The CH4 emissions from the Seine drainage network were also based on measurements of sampled waters in various rivers and streams (from headwaters to estuary) during different seasons in 2007, 2008, and 2010. After chemical analysis of CH4 concentrations in the water samples using a gas chromatographic technique and calculation of the CH4 supersaturation by stream order in rivers of the Seine basin (from 1 to 8) and by season we could estimate the CH4 emissions for the whole water surface area of the Seine drainage network. The livestock of the Seine basin produce CH4 emissions amounting to 166 × 106 kg C year−1, among which cattle are responsible for 85 %. The total CH4 emission from the Seine drainage network was estimated at 0.3 × 106 kg C year−1, large rivers being responsible for the largest proportion. Ebullition could account for an additional 0.2 × 106 kg C year−1. Soils of the Seine basin are a net sink for CH4 (9.4 × 106 kg C year−1). The water and soils fluxes are low with regard to emissions by livestock, but domestic waste, through landfills, could contribute an additional 40 × 106 kg C year−1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.