Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.
The conservation status of western lowland gorillas and central chimpanzees in western equatorial Africa remains largely speculative because many remote areas have never been surveyed and the impact of emergent diseases in the region has not been well documented. In this study, we compared ape densities and habitats in the Lokoué study area in Odzala National Park and the Goualougo Triangle in Nouabalé-Ndoki National Park in northern Republic of Congo. Both of these sites have long been considered strongholds for the conservation of chimpanzees and gorillas, but supposedly differ in vegetative composition and relative ape abundance. We compared habitats between these sites using conventional ground surveys and classified Landsat-7 ETM+ satellite images. We present density estimates via both standing-crop and marked-nest methods for the first time for sympatric apes of the Congo Basin. The marked-nest method was effective in depicting chimpanzee densities, but underestimated gorilla densities at both sites. Marked-nest surveys also revealed a dramatic decline in the ape population of Lokoué which coincided with a local Ebola epidemic. Normal baseline fluctuations in ape nest encounter rates during the repeated passages of marked-nest surveys were clearly distinguishable from a 80% decline in ape nest encounter rates at Lokoué. Our results showed that ape densities, habitat composition, and population dynamics differed between these populations in northern Congo. We emphasize the importance of intensifying monitoring efforts and further refinement of ape survey methods, as our results indicated that even the largest remaining ape populations in intact and protected forests are susceptible to sudden and dramatic declines.
We examined range use by great apes during logging activities and investigated associations between local variations in ape abundance and changes in the structure of the habitat or in the availability of fruits after disturbances. We carried out two annual censuses of western lowland gorilla (G. g. gorilla) and chimpanzee populations (Pan t. troglodytes) in an active logging concession in Southeast Cameroon. The results suggest that gorillas may adapt their range use to avoid most recently logged compartments, while chimpanzees appear to be more spatially resilient to logging. In our study site, selective logging affected 10% of the forest. After logging, gorillas nested in all types of vegetation, while chimpanzees nested exclusively in mixed mature forest. Fruit availability was not affected by logging and did not explain the distribution of ape nests in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.