Aptamer technology has shown much promise in cancer therapeutics for its targeting abilities. However, its potential to improve drug loading and release from nanocarriers has not been thoroughly explored. In this study, we employed drug-binding aptamers to actively load drugs into liposomes. We designed a series of DNA aptamer sequences specific to doxorubicin, displaying multiple binding sites and various binding affinities. The binding ability of aptamers was preserved when incorporated into cationic liposomes, binding up to 15equivalents of doxorubicin per aptamer, therefore drawing the drug into liposomes. Optimization of the charge and drug/aptamer ratios resulted in ≥80% encapsulation efficiency of doxorubicin, ten times higher than classical passively-encapsulating liposomal formulations and similar to a pH-gradient active loading strategy. In addition, kinetic release profiles and cytotoxicity assay on HeLa cells demonstrated that the release and therapeutic efficacy of liposomal doxorubicin could be controlled by the aptamer's structure. Our results suggest that the aptamer exhibiting a specific intermediate affinity is the best suited to achieve high drug loading while maintaining efficient drug release and therapeutic activity. This strategy was successfully applied to tobramycin, a hydrophilic drug suffering from low encapsulation into liposomes, where its loading was improved six-fold using aptamers. Overall, we demonstrate that aptamers could act, in addition to their targeting properties, as multifunctional excipients for liposomal formulations.
Study objectives Insomnia disorders as well as cardiometabolic disorders are highly prevalent in the psychiatric population compared to the general population. We aimed to investigate their association and evolution over time in a Swiss psychiatric cohort. Methods Data for 2861 patients (8954 observations) were obtained from two prospective cohorts (PsyMetab and PsyClin) with metabolic parameters monitored routinely during psychotropic treatment. Insomnia disorders were based on the presence of ICD-10 “F51.0" diagnosis (non-organic insomnia), the prescription of sedatives before bedtime or the discharge letter. Metabolic syndrome was defined using the International Diabetes Federation definition, while the 10-year risk of cardiovascular event or death was assessed using the Framingham Risk Score and the Systematic Coronary Risk Estimation, respectively. Results Insomnia disorders were observed in 30% of the cohort, who were older, predominantly female, used more psychotropic drugs carrying risk of high weight gain (olanzapine, clozapine, valproate) and were more prone to suffer from schizoaffective or bipolar disorders. Multivariate analyses showed that patients with high body mass index (OR = 2.02, 95%CI [1.51–2.72] for each ten-kg/m2 increase), central obesity (OR = 2.20, [1.63–2.96]), hypertension (OR = 1.86, [1.23–2.81]), hyperglycemia (OR = 3.70, [2.16–6.33]), high density lipoprotein hypocholesterolemia in women (OR = 1.51, [1.17–1.95]), metabolic syndrome (OR = 1.84, [1.16–2.92]) and higher 10-year risk of death from cardiovascular diseases (OR = 1.34, [1.17–1.53]) were more likely to have insomnia disorders. Time and insomnia disorders were associated with a deterioration of cardiometabolic parameters. Conclusions Insomnia disorders are significantly associated with metabolic worsening and risk of death from cardiovascular diseases in psychiatric patients.
Introduction The atypical antipsychotic quetiapine is known to induce weight gain and other metabolic complications. The underlying mechanisms are multifactorial and poorly understood with almost no information on the effect of dosage. Concerns were thus raised with the rise in low-dose quetiapine off-label prescription (i. e.,<150 mg/day). Methods In this study, we evaluated the influence of quetiapine dose for 474 patients included in PsyMetab and PsyClin studies on weight and metabolic parameter evolution. Weight, blood pressure, lipid, and glucose profiles were evaluated during a follow-up period of 3 months after treatment initiation. Results Significant dose-dependent metabolic alterations were observed. The daily dose was found to influence weight gain and increase the risk of undergoing clinically relevant weight gain (≥7% from baseline). It was also associated with a change in plasma levels of cholesterol (total cholesterol, LDL cholesterol, and HDL cholesterol) as well as with increased odds of developing hypertriglyceridemia, as well as total and LDL hypercholesterolemia. No impact of a dose increase on blood pressure and plasma glucose level was observed. Discussion The dose-dependent effect highlighted for weight gain and lipid alterations emphasizes the importance of prescribing the minimal effective dose. However, as the effect size of a dose increase on metabolic worsening is low, the potential harm of low-dose quetiapine should not be dismissed. Prescriptions must be carefully evaluated and regularly questioned in light of side effect onset.
Background: Psychiatric patients are known to be at high risk of developing cardiovascular diseases (CVDs), leading to an increased mortality rate. Objectives: To assess the CVD risk (presence of metabolic syndrome (MetS) and calculated 10-year CVD risk) in a Swiss psychiatric cohort taking weight gain inducing psychotropic drugs, compare the findings to a Swiss population-based cohort, and evaluate the prevalence of participants treated for metabolic disruptions in both cohorts. Methods: Data for 1,216 psychiatric patients (of whom 634 were aged 35-74 years) were obtained between 2007 and 2017 from a study with metabolic parameters monitored during psychotropic treatment and between 2003 and 2006 for 6733 participants from the population-based CoLaus¦PsyCoLaus study. Results: MetS as defined by the International Diabetes Federation (IDF) was identified in 33% of the psychiatric participants and 24.7% of the population-based subjects. Specifically, prevalence per the IDF definition was more than 3 times higher in the psychiatric cohort among women aged 35 to 49 years (25.6% versus 8.0%; p<10-4). The psychiatric and population-based cohorts, respectively, had comparable predicted CVD risk (10-year risk of CVD event >20%: 0% versus 0.1% in women and 0.3% versus 1.8%, p=.01 in men; 10-year risk of CVD deaths >5%: 8.5% versus 8.4%, p=.58, in women and 13.4% versus 16.6%, p=.42 in men). No difference was observed among the proportion of participants with MetS treated for metabolic disturbances in the two cohorts, with the exception of women aged 35-49 years, for whom those in the psychiatric cohort were half as likely to receive treatment compared to participants in CoLaus¦PsyCoLaus (17.8% versus 38.8% per the IDF definition; p=.0004). Conclusion: These findings emphasize the concern that psychiatric patients present an altered metabolic profile and that they do not receive adequate treatment for metabolic disruptiuons. Presence of metabolic disturbances should be routinely assessed, and adequate follow-up is needed to intervene early after illness onset.
Weight gain and metabolic complications are major adverse effects of many psychotropic drugs. We aimed to understand how socio-economic status (SES), defined as the Swiss socio-economic position (SSEP), is associated with cardiometabolic parameters after initiation of psychotropic medications known to induce weight gain. Cardiometabolic parameters were collected in two Swiss cohorts following the prescription of psychotropic medications. The SSEP integrated neighborhood-based income, education, occupation, and housing condition. The results were then validated in an independent replication sample (UKBiobank), using educational attainment (EA) as a proxy for SES. Adult patients with a low SSEP had a higher risk of developing metabolic syndrome over one year versus patients with a high SSEP (Hazard ratio (95% CI) = 3.1 (1.5–6.5), n = 366). During the first 6 months of follow-up, a significant negative association between SSEP and body mass index (BMI), weight change, and waist circumference change was observed (25 ≤ age < 65, n = 526), which was particularly important in adults receiving medications with the highest risk of weight gain, with a BMI difference of 0.86 kg/m2 between patients with low versus high SSEP (95% CI: 0.03–1.70, n = 99). Eventually, a causal effect of EA on BMI was revealed using Mendelian randomization in the UKBiobank, which was notably strong in high-risk medication users (beta: −0.47 SD EA per 1 SD BMI; 95% CI: −0.46 to −0.27, n = 11,314). An additional aspect of personalized medicine was highlighted, suggesting the patients’ SES represents a significant risk factor. Particular attention should be paid to patients with low SES when initiating high cardiometabolic risk psychotropic medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.