Globally, erosion of muddy tropical coasts that are dominated by aquaculture ponds, is an increasing problem. Restoration of mangrove greenbelts may counteract such erosion, by restoring the sediment balance. Hence, we aim to unravel the processes controlling natural mangrove regeneration in both "landward" (i.e., into aquaculture ponds) and seaward direction, using the fast eroding coastline of Demak (Indonesia) as case study. Firstly, we investigated which physical and chemical factors drive landward mangrove expansion by relating them to the presence/absence of mangrove seedlings in abandoned aquaculture ponds. Secondly, we investigated which physical parameters control seaward mangrove expansion by relating them to expansion and retreat at the seaside of mature mangrove stands.Landward mangrove expansion into abandoned aquaculture ponds was positively related to both emergence time (%) and sediment stability (i.e., shear strength), which are in turn both associated to bed level elevation and pond drainage. Surprisingly, there was no effect of soil chemistry. Seaward expansion of existing mangrove stands was strongly associated to foreshore morphology. Mangroves only expanded in the presence of an elevated mudflat, whereas the absence of a mudflat in combination with a concave (hollow) profile was associated with mangrove retreat. Our findings suggest that restoration of a mangrove greenbelt can be stimulated landward by improving drainage of abandoned aquaculture ponds. This enhances sediment stability and allows ponds to accrete. Seaward expansion can be induced by restoring foreshore morphology. Present results are discussed in the context of large-scale applications.
Global change processes such as sea level rise and the increasing frequency of severe storms threaten many coastlines around the world and trigger the need for interventions to make these often densely-populated areas safer. Mangroves could be implemented in Nature-Based Flood Defense, provided that we know how to conserve and restore these ecosystems at those locations where they are most needed. In this study, we investigate how best to restore mangroves along an aquaculture coast that is subject to land-subsidence, comparing two common mangrove restoration methods: 1) mangrove restoration by planting and 2) Ecological Mangrove Restoration (EMR); the assistance of natural mangrove regeneration through mangrove habitat restoration. Satellite data revealed that historically, landward mangrove expansion into the active pond zone has mainly occurred through mangrove planting on pond bunds. However, there is potential to create greenbelts along waterways by means of EMR measures, as propagule trap data from the field revealed that propagules of pioneer species were up to 21 times more abundant in creeks of the pond zone than near their source in the coastal zone. This was especially true during the prevailing onshore winds of the wet-season, suggesting that smart seasonal sluice gate management could help to efficiently trap seeds in target ponds. In the coastal zone, field experiments showed that permeable brushwood dams, aimed at expanding mangrove habitat, could not sufficiently overcome subsidence rates to increase natural mangrove expansion in the seaward direction, but did significantly increase the survival of already established (planted) seedlings compared to more wave-exposed sites. The survival and growth rate of EMR-supported plantings greatly varied between species. Out of the four planted species, Rhizophora mucronata had the highest survival (67%) but the lowest growth rate. Whereas the pioneer species Avicennia alba and Avicennia marina had lower survival rates (resp. 35 and 21%), but significantly higher growth rates, even resulting in fruiting young trees within a 16-month timeframe. Overall, we conclude that 1) EMR has potential in the pond zone, given that propagules were observed to reach well into the backwaters; and 2) that mangrove recovery in the coastal zone may be facilitated even at very challenging coastal sites by combining EMR with the planting of pioneer species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.