Many wildlife species occupy landscapes that vary in the distribution, abundance, and quality of food resources. Increasingly, urbanized and agricultural habitats provide supplemental food resources that can have profound consequences for host distributions, movement patterns, and pathogen exposure. Understanding how host and pathogen dispersal across landscapes is affected by the spatial extent of food-supplemented habitats is therefore important for predicting the consequences for pathogen spread and impacts on host occupancy. Here we develop a generalizable metapopulation model to understand how the relative abundance of provisioned habitats across the landscape and how the host dispersal responses to provisioning and infection influence patch occupancy by hosts and their pathogens. We find that pathogen invasion and landscape-level infection prevalence are greatest when provisioning increases patch attractiveness and disperser production and when infection has minimal costs on dispersal success. Alternatively, if provisioning promotes site fidelity or reduces disperser production, increasing the fraction of food-supplemented habitats can reduce landscape-scale infection prevalence and minimize disease-induced declines in host occupancy. This work highlights the importance of considering how resources and infection jointly influence host dispersal for predicting how changing resource distributions influence the spread of infectious diseases.
Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While COVID-19 research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution – invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation – that illuminate (sometimes unexpectedly) the emergence and spread of SARS-CoV-2. We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multi-species communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.
Syncytium formation, i.e., cell–cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.
Cited references for data sourced from the PREDICT project were mislabeled as 'PREEMPT' in the Supplementary Data file originally published online. The supplementary data have been updated with the correct label.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.