Microcystins are cyclic peptide toxins formed by cyanobacteria. These toxins are recognized for their association with algal blooms, posing a significant threat to ecosystems and drinking water quality. Due to the growing environmental concerns they raise, a comprehensive review on microcystins' genesis, toxicity, and analytical methods for their quantitative determination is outlined. Genes, including the mcyABC cluster, regulate microcystin biogenesis. Bioanalytical experiments have identified key environmental factors, such as temperature and nitrogen availability, that promote microcystin production. Microcystin toxicity is explored based on its modulatory effects on protein phosphatases 1 and 2A in specific tissues and organs. Additionally, biochemical mechanisms of chelation, transportation, resultant oxidative stress, and tumor promotion abilities of microcystins are also discussed. Various analytical methods to separate, detect, and quantify microcystins, including the quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy, and chromatographic platforms-linked tandem mass spectrometry (LC-MS) for unequivocal structural identification, are also reviewed. Since control of microcystins in water is of great necessity, both water treatment and mechanisms of abiotic transformation and microbial degradation are also discussed.
The gene encodes an essential enzyme with thioesterase and phospholipase A activity. Overexpression of Rv3802 orthologs in and increases mycolate content and decreases glycerophospholipids. Although a role in modulating the lipid composition of the unique mycomembrane has been proposed, the true biological function of Rv3802 remains uncertain. In this study, we present the first Rv3802 X-ray crystal structure, solved to 1.7 Å resolution. On the basis of the binding of PEG molecules to Rv3802, we identified its lipid-binding site and the structural basis for phosphatidyl-based substrate binding and phospholipase A activity. We found that movement of the α8-helix affords lipid binding and is required for catalytic turnover through covalent tethering. We gained insights into the mechanism of acyl hydrolysis by observing differing arrangements of PEG and water molecules within the active site. This study provides structural insights into biological function and facilitates future structure-based drug design toward Rv3802.
N-Aryl urea derivatives were synthesized and some showed activity against mycobacterial hydrolases while others showed antimicrobial activity against mycobacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.