Licorice, the name given to the roots and stolons of Glycyrrhiza species, has been used since ancient times as a traditional herbal remedy. Licorice contains several classes of secondary metabolites with which numerous human health benefits have been associated. Recent research suggests that licorice and its bioactive ingredients such as glycyrrhizin, glabridin, licochalcone A, licoricidin, and licorisoflavan A possess potential beneficial effects in oral diseases. This paper reviews the effects of licorice and licorice constituents on both the oral microbial pathogens and the host immune response involved in common ora-dental diseases (dental caries, periodontitis, candidiasis, and recurrent aphthous ulcers). It also summarizes results of clinical trials that investigated the potential beneficial effects of licorice and its constituents for preventing/treating oro-dental diseases.
Candida albicans is the predominant causal agent of candidiasis. Its ability to form hyphae and biofilm has been suggested to be key virulence factors. In this study, we investigated the effect of major licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth, biofilm formation and yeast-hyphal transition of C. albicans. The synergistic effect of licorice compounds with the antifungal drug nystatin was also evaluated. Minimal inhibitory concentrations (MICs) for C. albicans were determined using a microplate dilution assay. The synergistic effect with nystatin was determined similarly. The effect of licorice compounds on biofilm formation was evaluated using a microplate assay and crystal violet staining. The effect of licorice compounds on yeast-hyphal transition was determined by microscopic observation. The toxicity of licorice compounds towards oral epithelial cells was evaluated with an MTT assay. Glabridin and licochalcone A showed antifungal activity on C. albicans while glycyrrhizic acid had no effect. Complete growth inhibition occurred with sub-inhibitory concentrations of nystatin with either glabridin or licochalcone A. Biofilm formation was inhibited by 35-60% in the presence of licochalcone A (0.2 μg ml(-1)). A strong inhibitory effect (>80%) on hyphal formation was observed with licochalcone A or glabridin (100 μg ml(-1)). Glabridin and licochalcone A at high concentrations showed toxicity towards oral epithelial cells. In summary, glabridin and licochalcone A are potent antifungal agents and may act in synergy with nystatin to inhibit growth of C. albicans. Licochalcone A has a significant effect on biofilm formation, while both licochalcone A and glabridin prevented yeast-hyphal transition in C. albicans. These results suggest a therapeutic potential of licochalcone A and glabridin for C. albicans oral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.