Fragile X syndrome is caused by the absence of protein FMRP, the function of which is still poorly understood. Previous studies have suggested that FMRP may be involved in various aspects of mRNA metabolism, including transport, stability and/or translatability. FMRP was shown to interact with a subset of brain mRNAs as well as with its own mRNA; however, no speci®c RNA-binding site could be identi®ed precisely. Here, we report the identi®cation and characterization of a speci®c and high af®nity binding site for FMRP in the RGG-coding region of its own mRNA. This site contains a purine quartet motif that is essential for FMRP binding and can be substituted by a heterologous quartet-forming motif. The speci®c binding of FMRP to its target site was con®rmed further in a reticulocyte lysate through its ability to repress translation of a reporter gene harboring the RNA target site in the 5¢-untranslated region. Our data address interesting questions concerning the role of FMRP in the post-transcriptional control of its own gene and possibly other target genes.
Elevated blood pressure (BP) and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies (GWAS) identified common variants giving independent susceptibility for CKD and hypertension in the promoter of the UMOD gene3-9, encoding uromodulin, the major protein secreted in the normal urine. Despite compelling genetic evidence, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants directly increase UMOD expression in vitro and in vivo. We modeled this effect in transgenic mice and showed that uromodulin overexpression leads to salt-sensitive hypertension and to age-dependent renal lesions that are similarly observed in elderly subjects homozygous for UMOD risk variants. We demonstrate that the link between uromodulin and hypertension is caused by activation of the renal sodium co-transporter NKCC2. This very mechanism is relevant in humans, as pharmacological inhibition of NKCC2 is more effective in lowering BP in hypertensive patients homozygous for UMOD risk variants. Our findings establish a link between the genetic susceptibility to hypertension and CKD, the control of uromodulin expression and its role in a salt-reabsorbing tubular segment of the kidney. These data point to uromodulin as a novel therapeutic target to lower BP and preserve renal function.
The hepatitis B virus (HBV) X protein (HBx) is essential for virus infection and has been implicated in the development of liver cancer associated with chronic infection. HBx can interact with a number of cellular proteins, and in cell culture, it exhibits pleiotropic activities, among which is its ability to interfere with cell viability and stimulate HBV replication. Previous work has demonstrated that HBx affects cell viability by a mechanism that requires its binding to DDB1, a highly conserved protein implicated in DNA repair and cell cycle regulation. We now show that an interaction with DDB1 is also needed for HBx to stimulate HBV genome replication. Thus, HBx point mutants defective for DDB1 binding fail to complement the low level of replication of an HBx-deficient HBV genome when provided in trans, and one such mutant regains activity when directly fused to DDB1. Furthermore, DDB1 depletion by RNA interference specifically compromises replication of wild-type HBV, indicating that HBx produced from the viral genome also functions in a DDB1-dependent fashion. We also show that HBx in association with DDB1 acts in the nucleus and stimulates HBV replication mainly by enhancing viral mRNA levels, regardless of whether the protein is expressed from the HBV genome itself or supplied in trans. Interestingly, whereas HBx induces cell death in both HepG2 and Huh-7 hepatoma cell lines, it enhances HBV replication only in HepG2 cells, suggesting that the two activities involve distinct DDB1-dependent pathways. Chronic infection by hepatitis B virus (HBV) affects 350million people worldwide and is a major causative agent of liver diseases, including cirrhosis and hepatocellular carcinoma, one of the most common cancers in humans (27). HBV belongs to the Hepadnaviridae family of small enveloped DNA viruses that replicate primarily in the livers of their hosts and exhibit similarities to retroviruses. This family also contains rodent viruses, such as woodchuck hepatitis virus and ground squirrel hepatitis virus, as well as more distantly related members infecting avian species. While all mammalian hepadnaviruses cause liver cancer in their hosts, avian viruses do not (13).The main features of the hepadnavirus replication cycle are quite well understood (for a review, see reference 14). Upon infection, the 3.2-kb circular, partially double-stranded viral genome is transported into the cell nucleus, where it is converted into a covalently closed circular DNA. The covalently closed circular DNA serves as a template for transcription by host cell RNA polymerase II of four major viral RNA species, including the more than full-length pregenomic RNA. The pregenomic RNA is then reverse transcribed into DNA replicative intermediates in the cytoplasm within immature viral core particles by the virally encoded polymerase.
Fragile X syndrome, the most common form of inherited mental retardation, is caused by absence of FMRP, an RNA-binding protein implicated in regulation of mRNA translation and/or transport. We have previously shown that dFMR1, the Drosophila ortholog of FMRP, is genetically linked to the dRac1 GTPase, a key player in actin cytoskeleton remodeling. Here, we demonstrate that FMRP and the Rac1 pathway are connected in a model of murine fibroblasts. We show that Rac1 activation induces relocalization of four FMRP partners to actin ring areas. Moreover, Rac1-induced actin remodeling is altered in fibroblasts lacking FMRP or carrying a point-mutation in the KH1 or in the KH2 RNA-binding domain. In absence of wild-type FMRP, we found that phospho-ADF/Cofilin (P-Cofilin) level, a major mediator of Rac1 signaling, is lowered, whereas the level of protein phosphatase 2A catalytic subunit (PP2Ac), a P-Cofilin phosphatase, is increased. We show that FMRP binds with high affinity to the 5'-UTR of pp2acbeta mRNA and is thus a likely negative regulator of its translation. The molecular mechanism unraveled here points to a role for FMRP in modulation of actin dynamics, which is a key process in morphogenesis of dendritic spines, synaptic structures abnormally developed in Fragile X syndrome patient's brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.