The goal of the present study is to identify the differential expression of circular RNA (circRNA), miRNA, and piwi-interacting RNA (piRNA) after lineage commitment towards osteoand chondrogenesis of human bone marrow mesenchymal stromal cells (hMSCs). The cells were maintained for 7 days in either osteogenic or chondrogenic medium. RNA sequencing was performed to assess the expression of miRNA and piRNA, while RNA hybridization arrays were used to identify which circRNA were differentially expressed. qPCR validation of a selection of targets for both osteogenic and chondrogenic differentiation was carried out. The differential expression of several circRNA, miRNA, and piRNA was identified and validated. The expression of total and circular isoforms of FKBP5 was upregulated both in osteo-and chondrogenesis and it was influenced by the presence of dexamethasone. ZEB1, FADS2, and SMYD3 were also identified as regulated in differentiation and/or by dexamethasone. In conclusion, we have identified a set of different non-coding RNAs that are differentially regulated in early osteogenic and chondrogenic differentiation, paving the way for further investigation to understand how dexamethasone controls the expression of those genes and what their function is in MSC differentiation.
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially preventable adverse side effect of mainly antiresorptive drugs. MRONJ is expected to become a growing clinical problem due to the aging population and the increasing number of patients requiring antiresorptive agents. Knowledge and awareness about MRONJ and elimination of the oral and dental risk factors before starting antiresorptive therapy (AR) are fundamental to reducing the incidence of MRONJ. In urology, ARs are used primarily in patients suffering from bone metastases due to prostate cancer and to prevent cancer-treatment-induced bone loss (CTIBL) in prostate cancer patients receiving endocrine therapy. This postal survey aimed to evaluate disease-related knowledge and awareness about implementing oral examinations for patients starting AR among Swiss, German, and Austrian urologists. A total of 176 urologists returned the completed questionnaire, yielding a response rate of 11.7%. Of the respondents, 44.9% (n = 79) and 24.4% (n = 43) stated that they give more than five first-time prescriptions of denosumab and of intravenous or oral bisphosphonates per year, respectively. Only 14.8% (n = 26) of the participating urologists had never encountered MRONJ cases related to BPs. Of the participants, 89.8% (n = 158) had implemented referrals to dentists for oral examination before initiating AR. The mean percentage of correct answers regarding the knowledge about MRONJ was 70.9% ± 11.2%. In contrast to previous surveys on MRONJ among physicians, this study showed that the participating urologists were sufficiently informed about MRONJ, as reflected by the high number of participants implementing preventive dental screenings.
Polyetheretherketone (PEEK) has become the biomaterial of choice for repairing craniofacial defects over time. Prospects for the point-of-care (POC) fabrication of PEEK customized implants have surfaced thanks to the developments in three-dimensional (3D) printing systems. Consequently, it has become essential to investigate the characteristics of these in-house fabricated implants so that they meet the necessary standards and eventually provide the intended clinical benefits. This study aimed to investigate the effects of the steam sterilization method on the dimensional accuracy of POC 3D-printed PEEK customized cranial implants. The objective was to assess the influence of standard sterilization procedures on material extrusion-based 3D-printed PEEK customized implants with non-destructive material testing. Fifteen PEEK customized cranial implants were fabricated using an in-house material extrusion-based 3D printer. After fabrication, the cranial implants were digitalized with a professional-grade optical scanner before and after sterilization. The dimensional changes for the 3D-printed PEEK cranial implants were analyzed using medically certified 3D image-based engineering software. The material extrusion 3D-printed PEEK customized cranial implants displayed no statistically significant dimensional difference with steam sterilization (p > 0.05). Evaluation of the cranial implants’ accuracy revealed that the dimensions were within the clinically acceptable accuracy level with deviations under 1.00 mm. Steam sterilization does not significantly alter the dimensional accuracy of the in-house 3D-printed PEEK customized cranial implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.