IgA plays ambivalent roles in the immune system. The balance between inhibitory and activating responses relies on the multimerization status of IgA and interaction with their cognate receptors. In mucosal sites, secretory IgA (SIgA) protects the host through immune-exclusion mechanisms, but its function in the bloodstream remains unknown. Using bone marrow–derived dendritic cells, we found that both human and mouse SIgA induce tolerogenic dendritic cells (DCs) following binding to specific ICAM-3 grabbing nonintegrin receptor 1. This interaction was dependent on Ca2+ and mannose residues. SIgA-primed DCs (SIgA-DCs) are resistant to TLR-dependent maturation. Although SIgA-DCs fail to induce efficient proliferation and Th1 differentiation of naive responder T cells, they generate the expansion of regulatory T cells through IL-10 production. SIgA-DCs are highly potent in inhibiting autoimmune responses in mouse models of type 1 diabetes and multiple sclerosis. This discovery may offer new insights about mucosal-derived DC immunoregulation through SIgA opening new therapeutic approaches to autoimmune diseases.
Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients (=169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF-B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.