In plants, metabolic homeostasis-the driving force of growth and development-is achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms.
Metabolic homeostasis is regulated by enzyme activities but the importance of regulating their corresponding coenzyme levels is unexplored. The organic coenzyme thiamine diphosphate (TDP) is supplied as needed and controlled by a riboswitch sensing mechanism in plants through the circadian regulated THIC gene. Riboswitch disruption leads to loss of time-of-day regulation of THIC expression, negatively impacting plant fitness. Pathway precursor balancing combined with enhancing the biosynthesis pathway demonstrate the importance of the riboswitch in gauging TDP levels and indicate that TDP impacts the clock in Arabidopsis. Altering the phase of THIC expression to be synchronous with TDP transporters disrupts the precision of the riboswitch suggesting that temporal separation of these processes is important. All defects are bypassed by growing plants under continuous light conditions highlighting the need to control levels of this coenzyme under diel cycles. Thus, consideration of coenzyme homeostasis within the well-studied domain of metabolic homeostasis is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.