Flow leakage through abandoned wells and improperly plugged boreholes drilled between hydrogeologically separated water‐bearing zones represent potential pathways of contamination. The present study provides an analytical evaluation of the transient flow rate through these artificial conduits and the resulting hydraulic head distributions when (1) artificial gradients are created by an injection well operating in one of the aquifers or (2) natural hydraulic head differences are present between two confined aquifers. The analysis is conducted by solving the groundwater flow equations in the confined aquifers that are coupled by the flow through the well or borehole. A case study was investigated involving contamination leakage through abandoned wells and improperly plugged boreholes caused by the operation of deep waste injection wells.
Abstract:Theoretical well functions have been derived over the years to predict ground water level behaviour in aquifer systems under stress owing to groundwater extraction. The drawdown data collected during pump tests are typically analysed using graphical curve-matching procedures to estimate aquifer parameters based on these well functions. Difficulty in aquifer characteristic identification and parameter estimation may arise when the field data do not perfectly match the drawdown curves obtained from the well functions. The present study provides a new method for the interpretation of aquifer pump tests which supplements the existing curve-matching procedures in case ideal conditions do not exist; the proposed method provides a greater degree of flexibility in the data analysis for diagnostic tool purposes. The method, referred to as the Incremental Area Method (IAM) is based on integrating the logarithmic-based drawdown curves within a discrete time and matching the results with a corresponding time integral of the Theis (1935) Well Function which governs ideal confined aquifers. The application of the proposed method to synthetically generated data and field data showed that IAM represents a viable method which yields information on potential non-idealness of the aquifer and provides aquifer parameter estimates thus potentially overcoming drawdown data curve-matching difficulties.
Step‐drawdown tests may be used to evaluate the well loss component of the well drawdown and to obtain estimates of the aquifer properties. A procedure that analyzes step‐drawdown tests with pumping stages of unequal time durations was formulated and developed into a computer program; the method is applicable to confined aquifers where the water‐level drawdowns are governed by the Theis well function. A least‐squares‐fit error analysis is used in the determination of the aquifer properties and the well loss component of the drawdown.
The standard practice for assessing aquifer parameters is to match groundwater drawdown data obtained during pumping tests against theoretical well function curves specific to the aquifer system being tested. The shape of the curve derived from the logarithmic time derivative of the drawdown data is also very frequently used as a diagnostic tool to identify the aquifer system in which the pumping test is being conducted. The present study investigates the incremental area method (IAM) to serve as an alternative diagnostic tool for the aquifer system identification as well as a supplement to the aquifer parameter estimation procedure. The IAM based diagnostic curves for ideal confined, leaky, bounded and unconfined aquifers have been derived as part of this study, and individual features of the plots have been identified. These features were noted to be unique to each aquifer setting, which could be used for rapid evaluation of the aquifer system. The effectiveness of the IAM methodology was investigated by analyzing field data for various aquifer settings including leaky, unconfined, bounded and heterogeneous conditions. The results showed that the proposed approach is a viable method for use as a diagnostic tool to identify the aquifer system characteristics as well as to support the estimation of the hydraulic parameters obtained from standard curve matching procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.