OBJECTIVE-To determine the role of hepatocyte growth factor (HGF)/c-Met on b-cell survival in diabetogenic conditions in vivo and in response to cytokines in vitro.RESEARCH DESIGN AND METHODS-We generated pancreasspecific c-Met-null (PancMet KO) mice and characterized their response to diabetes induced by multiple low-dose streptozotocin (MLDS) administration. We also analyzed the effect of HGF/c-Met signaling in vitro on cytokine-induced b-cell death in mouse and human islets, specifically examining the role of nuclear factor (NF)-kB.RESULTS-Islets exposed in vitro to cytokines or from MLDStreated mice displayed significantly increased HGF and c-Met levels, suggesting a potential role for HGF/c-Met in b-cell survival against diabetogenic agents. Adult PancMet KO mice displayed normal glucose and b-cell homeostasis, indicating that pancreatic c-Met loss is not detrimental for b-cell growth and function under basal conditions. However, PancMet KO mice were more susceptible to MLDS-induced diabetes. They displayed higher blood glucose levels, marked hypoinsulinemia, and reduced b-cell mass compared with wild-type littermates. PancMet KO mice showed enhanced intraislet infiltration, islet nitric oxide (NO) and chemokine production, and b-cell apoptosis. c-Met-null b-cells were more sensitive to cytokine-induced cell death in vitro, an effect mediated by NF-kB activation and NO production. Conversely, HGF treatment decreased p65/NF-kB activation and fully protected mouse and, more important, human b-cells against cytokines.CONCLUSIONS-These results show that HGF/c-Met is critical for b-cell survival by attenuating NF-kB signaling and suggest that activation of the HGF/c-Met signaling pathway represents a novel strategy for enhancing b-cell protection. Diabetes 60: [525][526][527][528][529][530][531][532][533][534][535][536] 2011
Hepatocyte growth factor (HGF) is a mitogen and insulinotropic agent for the β-cell. However, whether HGF/c-Met has a role in maternal β-cell adaptation during pregnancy is unknown. To address this issue, we characterized glucose and β-cell homeostasis in pregnant mice lacking c-Met in the pancreas (PancMet KO mice). Circulating HGF and islet c-Met and HGF expression were increased in pregnant mice. Importantly, PancMet KO mice displayed decreased β-cell replication and increased β-cell apoptosis at gestational day (GD)15. The decreased β-cell replication was associated with reductions in islet prolactin receptor levels, STAT5 nuclear localization and forkhead box M1 mRNA, and upregulation of p27. Furthermore, PancMet KO mouse β-cells were more sensitive to dexamethasone-induced cytotoxicity, whereas HGF protected human β-cells against dexamethasone in vitro. These detrimental alterations in β-cell proliferation and death led to incomplete maternal β-cell mass expansion in PancMet KO mice at GD19 and early postpartum periods. The decreased β-cell mass was accompanied by increased blood glucose, decreased plasma insulin, and impaired glucose tolerance. PancMet KO mouse islets failed to upregulate GLUT2 and pancreatic duodenal homeobox-1 mRNA, insulin content, and glucose-stimulated insulin secretion during gestation. These studies indicate that HGF/c-Met signaling is essential for maternal β-cell adaptation during pregnancy and that its absence/attenuation leads to gestational diabetes mellitus.
SUMMARY Pancreatic β-cell mass adapts to changing insulin demands in the body. One of the most amazing reversible β-cell adaptations occurs during pregnancy and postpartum conditions. During pregnancy, the increase in maternal insulin resistance is compensated by maternal β-cell hyperplasia and hyperfunctionality to maintain normal blood glucose. Although the cellular mechanisms involved in maternal β-cell expansion have been studied in detail in rodents, human studies are very sparse. A summary of these studies in rodents and humans is described below. Since β-cell mass expands during pregnancy, unraveling the endocrine/paracrine/autocrine molecular mechanisms responsible for these effects can be of great importance for predicting and treating gestational diabetes and for finding new cues that induce β-cell regeneration in diabetes. In addition to the well known implication of lactogens during maternal β-cell expansion, additional participants are being discovered such as serotonin and HGF. Transcription factors, such as hepatocyte nuclear factor-4α and the forkhead box protein-M1, and cell cycle regulators, such as menin, p27 and p18, are important intracellular signals responsible for these effects. In this article, we summarize and discuss novel studies uncovering molecular mechanisms involved in the maternal β-cell adaptive expansion during pregnancy.
Hepatocyte growth factor (HGF) is a mitogen required for β-cell replication during pregnancy. To determine whether HGF/c-Met signaling is required for β-cell regeneration, we characterized mice with pancreatic deletion of the HGF receptor, c-Met (PancMet KO mice), in two models of reduced β-cell mass and regeneration: multiple low-dose streptozotocin (MLDS) and partial pancreatectomy (Ppx). We also analyzed whether HGF administration could accelerate β-cell regeneration in wild-type (WT) mice after Ppx. Mouse islets obtained 7 days post-Ppx displayed significantly increased c-Met, suggesting a potential role for HGF/c-Met in β-cell proliferation in situations of reduced β-cell mass. Indeed, adult PancMet KO mice displayed markedly reduced β-cell replication compared with WT mice 7 days post-Ppx. Similarly, β-cell proliferation was decreased in PancMet KO mice in the MLDS mouse model. The decrease in β-cell proliferation post-Ppx correlated with a striking decrease in D-cyclin levels. Importantly, PancMet KO mice showed significantly diminished β-cell mass, decreased glucose tolerance, and impaired insulin secretion compared with WT mice 28 days post-Ppx. Conversely, HGF administration in WT Ppx mice further accelerated β-cell regeneration. These results indicate that HGF/c-Met signaling is critical for β-cell proliferation in situations of diminished β-cell mass and suggest that activation of this pathway can enhance β-cell regeneration.
OBJECTIVEPKC-ζ activation is a key signaling event for growth factor–induced β-cell replication in vitro. However, the effect of direct PKC-ζ activation in the β-cell in vivo is unknown. In this study, we examined the effects of PKC-ζ activation in β-cell expansion and function in vivo in mice and the mechanisms associated with these effects.RESEARCH DESIGN AND METHODSWe characterized glucose homeostasis and β-cell phenotype of transgenic (TG) mice with constitutive activation of PKC-ζ in the β-cell. We also analyzed the expression and regulation of signaling pathways, G1/S cell cycle molecules, and β-cell functional markers in TG and wild-type mouse islets.RESULTSTG mice displayed increased plasma insulin, improved glucose tolerance, and enhanced insulin secretion with concomitant upregulation of islet insulin and glucokinase expression. In addition, TG mice displayed increased β-cell proliferation, size, and mass compared with wild-type littermates. The increase in β-cell proliferation was associated with upregulation of cyclins D1, D2, D3, and A and downregulation of p21. Phosphorylation of D-cyclins, known to initiate their rapid degradation, was reduced in TG mouse islets. Phosphorylation/inactivation of GSK-3β and phosphorylation/activation of mTOR, critical regulators of D-cyclin expression and β-cell proliferation, were enhanced in TG mouse islets, without changes in Akt phosphorylation status. Rapamycin treatment in vivo eliminated the increases in β-cell proliferation, size, and mass; the upregulation of cyclins Ds and A in TG mice; and the improvement in glucose tolerance—identifying mTOR as a novel downstream mediator of PKC-ζ–induced β-cell replication and expansion in vivo.CONCLUSIONSPKC-ζ, through mTOR activation, modifies the expression pattern of β-cell cycle molecules leading to increased β-cell replication and mass with a concomitant enhancement in β-cell function. Approaches to enhance PKC-ζ activity may be of value as a therapeutic strategy for the treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.