Abstract-Proteomics is currently driven by mass spectrometry. For the analysis of tandem mass spectra many computational algorithms have been proposed. There are two approaches, one which assigns a peptide sequence to a tandem mass spectrum directly and one which employs a sequence database for looking up possible solutions. The former method needs high quality spectra while the latter can tolerate lower quality spectra. Since both methods are computationally expensive, it is sensible to establish spectral quality using an independent fast algorithm. In this study, we first establish proper settings for database search algorithms for the analysis of spectra in our gold benchmark dataset and then analyze the performance of ScanRanker, an algorithm for quality assessment of tandem MS spectra, on this ground truth data. We found that OMSSA and MSGFDB have limitations in their scoring functions but were able to form a proper consensus prediction using majority vote for our benchmark data. Unfortunately, ScanRanker's results do not correlate well with the consensus and ScanRanker is also too slow to be used in the capacity it is supposed to be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.