Nanosilver is increasingly used in the food industry and biomedical applications. A lot of studies have been done to investigate the potential toxicity of nanosilver. But information on whether or how nanosilver particles bring changes in genetic materials remains scant. In this study, the replication fidelity of the rpsL gene was quantified when nanosilver particles were present in polymerase chain reactions (PCRs) or cell cultures of E. coli transformed with the wild-type rpsL gene. Three types of nanosilver (silver nanopowder, SN; silver-copper nanopowder, SCN; and colloidal silver, CS) were tested. The results showed that the replication fidelity of the rpsL gene was differentially compromised by all three kinds of nanosilver particle compared with that without nanosilver. This assay could be expanded and applied to any other materials to preliminarily assess their potential long-term toxicity as a food additive or biomedical reagent. Moreover, we found that nanosilver materials bind with genomic DNA under atomic force microscopy, and this might be an explanation for the compromised DNA replication fidelity.
Although zinc oxide (ZnO) nanoparticles (NPs) have been widely formulated in sunscreens, the relationship between reactive oxygen species (ROS) generation induced by these particles, zinc ions, and cytotoxicity is not clearly understood. This study explores whether these factors can be accurately quantified and related. The study demonstrates a strong correlation between ZnO NP-induced cytotoxicity and free intracellular zinc concentration (R (2) = .945) in human immune cells, indicating a requirement for NP dissolution to precede cytotoxicity. In addition, although direct exposure to ZnO NPs was found to induce cytotoxicity at relatively high concentrations, indirect exposure (via dialysis) was not cytotoxic, even at extremely high concentrations, highlighting a requirement for NP-to-cell contact. Elevated levels of ROS present in NP-exposed cells also correlated to both cytotoxicity and intracellular free zinc. Although the addition of antioxidant was able to reduce ROS, cytotoxicity to ZnO NPs was unaffected, suggesting ROS may be, in part, a result of cytotoxicity rather than a causal factor. This study highlights both the requirement and role of intracellular dissolution of zinc nanomaterials to elicit a cytotoxic response. This response is only partially ROS dependent, and therefore, modification of NP uptake and their intracellular solubility are key components in modulating the bioactivity of ZnO NPs.
Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.
Amplification of GC-rich DNA sequences is still a difficult task worldwide. Two frequently seen and inexpensive reagents-ethylene glycol and 1,2-propanediol-were found to be more effective than betaine in the amplification of 104 randomly selected GC-rich human DNA sequences with GC contents of 60-80% and lengths of 700-800 bp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.