The requirement for low cost manufacturing makes bacterial cells a logical platform for the production of recombinant subunit vaccines for malaria. However, protein solubility has been a major stumbling block with prokaryotic expression systems. Notable examples include the transmission blocking vaccine candidates, Pfs25 and Pfs48/45, which are almost entirely insoluble when expressed as recombinant proteins in Escherichia coli. Various solubility tags have been used with limited success in improving solubility, although recent studies with granule lattice protein 1 (Grl1p) from the ciliated protozoan, Tetrahymena thermophila, have shown promise. Here, we examine a related solubility tag, granule lattice protein 3 (Grl3p) from T. thermophila, and compare it to both Grl1p and the well-studied maltose binding protein (MBP) used to improve the solubility of multiple protein targets. We find that Grl3p performs comparably to Grl1p when linked to Pfs25 but significantly improves solubility when paired with Pfs48/45.
Bacillus subtilis has been a reliable platform for the expression of extracellular proteases for several decades. Although a majority of Bacillus subtilis subspecies express proteases, the amount of secreted enzyme varies depending on the strain and environmental conditions used. Here, two Bacillus subtilis spp. subtilis strains, NRRL B-3384 and NRRL B-3387, from the ARS Culture collection (NRRL), were compared for secreted protease activity. The highest activity was found in strain NRRL B-3384, and proteolysis occurred at temperatures as high as 80°C and across a broad range of pH, with maximum activity at pH 9.0 and 60°C indicating the presence of a thermostable alkaline protease. To our knowledge, this is the first study to evaluate protease production in Bacillus subtilis spp. subtilis strains NRRL B-3384 and B3387 and suggests that NRRL B-3384 may have utility in the production of enzymes for industrial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.