Small organic molecules are promising candidates for cheaper, flexible and good‐performance sources for organic solar cells (OSCs) due to their easy fabrication, low cost and slightly cheaper processing. However, the lower power conversion efficiency of OSCs is the main problem for their applications. Ferrocene structures could be the best candidates for the active layers of OSCs due to their unique properties such as thermal and chemical stability. The electrochemical, electro‐optical and solar cell performances of 2,5‐dicyano‐3‐ferrocenyl‐4‐ferrocenylethynylhexa‐2,4‐dienedinitrile (DiCN‐Fc) structures were investigated. First, the electrochemical and electro‐optical properties were examined for finding the highest occupied and lowest unoccupied molecular orbital values and bandgap of DiCN‐Fc. The best photovoltaic performance was obtained with 7 wt% of DiCN‐Fc loading, with a power conversion efficiency of about 4.27%. In the light of our investigations, ferrocenyl‐substituted small organic molecules could contribute to the development of organic photovoltaic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.