The main object of this paper is to present a systematic investigation of new classes of quaternion numbers associated with the familiar Pell and Pell-Lucas numbers. The various results obtained here for these classes of quaternion numbers include recurrence relations, summation formulas and Binet's formulas.
Various families of quaternion and octonion number sequences (such as Fibonacci quaternion, Fibonacci octonion, and so on) have been established by a number of authors in many different ways. In addition, formulas and identities involving these number sequences have been presented. In this paper, we aim at establishing new classes of octonion numbers associated with the familiar Jacobsthal and Jacobsthal-Lucas numbers. We introduce the Jacobsthal octonions and the Jacobsthal-Lucas octonions and give some of their properties. We derive the relations between Jacobsthal octonions and Jacobsthal-Lucas octonions.
AbctractThe sedenions form a 16-dimensional non-associative and non-commutative algebra over the set of . . The main object of this paper is to present a systematic investigation of new classes of sedenion numbers associated with the familiar Jacobsthal numbers. The various results obtained here for these classes of sedenion numbers include recurrence relations, Binet formula, generating function, exponentinal generating functions, poisson generating functions and also we presented the Cassini identity, Catalan's identities and d'Ocagne's identity by their Binet forms
Dual Jacobsthal ve Dual Jacobsthal-Lucas Sedeniyonlar ÜzerineÖz Sedeniyonlar üzerinde birleşmeli ve değişmeli olmayan 16 boyutlu bir cebirdir. Bu çalışmanın temel amacı bilinen Jacobsthal sayıları ile ilgili sedeniyon sayıların yeni bir sınıfını sunmaktır. Rekürans ilişkilerini içeren sedeniyon sayıların bu sınıfı için; Binet formülleri, üreteç fonksiyonlar, üstel üreteç fonksiyonlar, poisson üreteç fonksiyonlar gibi çeşitli sonuçlar elde edildi ve aynı zamanda bu sayıların Binet formülleri yardımıyla Cassini özdeşliği, Catalan özdeşlikleri ve d'Ocagne's özdeşliği sunuldu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.