Location privacy protection is an essential but challenging topic in the field of network security. Although the existing research methods, such as k -anonymity, mix zone, and differential privacy, show significant success, they usually neglect the location semantic and the proper trade-off between privacy and utility, which may allow attackers to obtain user privacy information by revealing the semantic correlation between the anonymous region and user's real location, thus causing privacy leakage. To solve this problem, we propose a location privacy protection scheme based on the k-anonymity technique, which provides practical location privacy-preserving through generating an anonymous set. This paper proposes a new location privacy attack strategy termed semantic relativity attack (SRA), which considers the location semantic problem. Correspondingly, a semantic and trade-off aware location privacy protection mechanism (STA-LPPM) is presented to achieve privacy protection with both high-level privacy and utility. To be specific, we model the location privacy protection as a multi-objective optimization problem and propose the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) to generate the optimal anonymous set calculating the well-design fitness functions of the multi-objective optimization problem. In this way, the privacy scheme can provide mobile users with the right balance of privacy protection and service quality. Experiments reveal that our privacy scheme can effectively resist the semantic relativity attack while preventing significant utility degrading.
Laser-Induced Breakdown Spectroscopy (LIBS) is a popular technique for elemental quantitative analysis in chemistry community, based on which, various methods are developed to determinate the concentrations of chemical samples. Despite the successful applications of the existing methods, they still struggle to obtain accurate samples analyses, due to their limited prediction capability, the complex compositions of samples and mutual interference of elements. In this paper, we propose a novel heterogeneous stacking ensemble learning model called Heterogeneous stACKing Ensemble Model LIBS (Hackem-LIBS) to achieve LIBS quantitative analysis with higher accuracy. Specifically, we propose a stacking ensemble learning framework consisting two stages. In the first stage, we train different heterogeneous component learners with multiple sub-training sets and pick out the optimal learners. In the second stage, we leverage the enhanced features predicted by the selected learners to train a stronger metalearner, which is used to make the final prediction. In addition, we combine Genetic Algorithm (GA) with Sequential Forward Selection (SFS) to reduce the redundancy of training features, which ensures more effective learning and higher computation efficiency. Extensive experiments on two public benchmarks are conducted and the results show that our approach achieves better accuracy in determinating the concentrations of elements and is practically applicable to the quantitative analysis of complex chemical samples via the LIBS technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.