We study three computer algebra systems, namely SageMath (with SageManifolds package), Maxima (with ctensor package) and Python language (with GraviPy module), which allow tensor manipulation for general relativity calculations along with general algebraic calculations. We present a benchmark of these systems using simple examples. After the general analysis, we focus on the SageMath and SageManifolds system to derive, analyze and visualize the solutions of the massless Klein-Gordon equation and geodesic motion with Hamilton-Jacobi formalism. We compare our numerical result of the Klein-Gordon equation with the asymptotic form of the analytical solution to see that they agree. * Man = Manifold (4 , 'Man ' , r '\ mathcal { M } ') 4 5 # Define the parameter " M " ( mass ) : 6 M = var ( 'M ') 7 8 # Define the coordinates { t =0 , r =1 , theta (= th ) =2 , phi =3} with ranges 9 # ( BL = Boyer -Lidquist ) 10 BL .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.