Understanding the dynamics of the laser crystallization (LC) process of Ge thin films by nanosecond (ns) pulsed infrared (IR) lasers is important for producing homogeneous, crack-free crystalline device-grade films for use in thin-film transistors, photo-detectors, particle detectors, and photovoltaic applications. Our motivation is to describe a ns IR laser-based crystallization process of Ge by implementing suitable parameters to fabricate thin-film devices. Our LC technique was applied to crystallize thin amorphous Ge (a-Ge) films with thicknesses suitable for device applications. The LC process was applied to a 300 nm-thick a-Ge thin film utilizing a 200 ns pulsed IR laser with a wavelength of 1064 nm. Electron-beam-evaporation-deposited a-Ge on glass substrates were subject to successive ns laser pulses with a line focus. The crystallinity of the polycrystalline Ge (pc-Ge) films was evaluated by Raman spectroscopy, optical microscopy, and electron backscatter diffraction (EBSD). LC-Ge exhibited a Raman peak of around 300 cm–1, confirming successful crystallization of a-Ge. pc-Ge domain sizes exceeding several tens of micrometers were observed in EBSD scans. LC of a-Ge minimizes the thermal energy budget of processing and provides flexibility to locally crystallize the film. Our work is the first demonstration of the LC of a-Ge thin films, resulting in domain sizes exceeding tens of micrometers via a ns pulsed IR laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.