Hydrogen is a green, environmentally benign and sustainable energy source with no harmful combustion products to fulfil the increasing energy demand. Photocatalytic oxidation has various advantageous to produce hydrogen from different sources such as wastewater, alcohol solutions using different types of catalysts. Sucrose solution was chosen as a model solution to evolve hydrogen
The sugar industry is one of the most wastewater‐producing industries and it contains high content of organic and inorganic substances. Treating and reusing wastewater has significant importance because sugar industry needs to use a high volume of water. In this study, sugar industry wastewater was treated under subcritical conditions and the impacts of reaction temperature and duration over TOC removal percentage were investigated. Additionally, the impact of NaOH concentration over TOC removal percentage was examined. The highest TOC removal was obtained almost 95 % in the presence of 0.1 M of NaOH at 240 °C for 90 min of reaction duration. Treatment of sugar industry wastewater by subcritical water oxidation followed the second‐order reaction kinetic model and the activation energy was found as 11.41 kJ/mol. Furthermore, the intermediate products were identified via GC‐MS.
Hydrogen is a clean, environmentally friendly, storable, and sustainable green energy source as well as a potential fuel. It could be produced from various biomass, wastewater, or other sources by different processes. In this study, hydrogen was evolved from sucrose model solution and real sugar beet wastewater by photocatalytic oxidation using a perovskite catalyst under solar light irradiation. In this context, firstly, the graphene supported LaFeO3 (GLFO) was synthesized and then, a characterization study shows that GLFO is successfully synthesized. To optimize the reaction parameters (pH, catalyst loading, and initial hydrogen peroxide concentration), an experimental matrix was created using the Box Behnken model. Whereas the highest hydrogen evolution from sucrose model solution was observed as 3520 μmol/gcat, the highest hydrogen evolution from sugar beet wastewater was obtained as 7035 μmol/gcat. The highest TOC removal (99.73 %) from sugar beet wastewater was also achieved at the same reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.