In the literature it is observed that complex image processing operations are used in the classification of Ball Grid Array (BGA) X-ray images, however high classification results were not achieved. In recent years, it has been shown that deep learning methods are very successful especially in classification problems. In this study, a new deep neural network (DNN) model is proposed to classify the BGA X-ray images. The proposed DNN model contains feature extractor layers and a minimum distance classifier. Since the proposed network consists of less number of layers (4 convolution layers and 1 fully connected layer), determination of the hyper-parameters of the network and training of the network are accomplished in a short time. BGA X-ray images are categorized into 4 classes according to the conditions of the solder joints: normal, short-circuit, bonding defect and void defect. The dataset used in this study is comprised of 67, 76, 53 and 76 images for these classes, respectively. 80% of all data is allocated for the training set and the remaining 20% is allocated for the test set. Compared with the existing methods in the literature, a very high success rate of 97% is achieved for the classification of BGA X-ray images with the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.