Anemia during cardiopulmonary bypass (CPB) is strongly associated with acute kidney injury in clinical studies; however, reversal of anemia with red blood cell (RBC) transfusions is associated with further renal injury. To understand this paradox, we evaluated the effects of reversal of anemia during CPB with allogenic RBC transfusion in a novel large-animal model of post-cardiac surgery acute kidney injury with significant homology to that observed in cardiac surgery patients. Adult pigs undergoing general anesthesia were allocated to a Sham procedure, CPB alone, Sham+RBC transfusion, or CPB+RBC transfusion, with recovery and reassessment at 24 h. CPB was associated with dilutional anemia and caused acute kidney injury in swine characterized by renal endothelial dysfunction, loss of nitric oxide (NO) bioavailability, vasoconstriction, medullary hypoxia, cortical ATP depletion, glomerular sequestration of activated platelets and inflammatory cells, and proximal tubule epithelial cell stress. RBC transfusion in the absence of CPB also resulted in renal injury. This was characterized by endothelial injury, microvascular endothelial dysfunction, platelet activation, and equivalent cortical tubular epithelial phenotypic changes to those observed in CPB pigs, but occurred in the absence of severe intrarenal vasoconstriction, ATP depletion, or reductions in creatinine clearance. In contrast, reversal of anemia during CPB with RBC transfusion prevented the reductions in creatinine clearance, loss of NO bioavailability, platelet activation, inflammation, and epithelial cell injury attributable to CPB although it did not prevent the development of significant intrarenal vasoconstriction and endothelial dysfunction. In conclusion, contrary to the findings of observational studies in cardiac surgery, RBC transfusion during CPB protects pigs against acute kidney injury. Our study underlines the need for translational research into indications for transfusion and prevention strategies for acute kidney injury.
Background: Allogeneic erythrocyte transfusion in cardiac surgical patients is associated with a fourfold increase in pulmonary complications. Our understanding of the processes underlying these observations is poor and there is no experimental model of transfusion-related acute lung injury that shows homology to cardiac surgical patients. Our objective was to develop a novel swine recovery model to determine how two clinical risk factors, allogenic erythrocyte transfusion and cardiopulmonary bypass, interact in the genesis of postcardiac surgery acute lung injury. Methods: Thirty-six pigs were infused with allogeneic 14-or 42-day-old erythrocytes or they underwent cardiopulmonary bypass with or without transfusion of 42-day erythrocyte. Controls received saline. All pigs were recovered and assessed for pulmonary dysfunction, inflammation, and endothelial activation at 24 h. Results: Transfusion of stored allogeneic erythrocytes in pigs compared with sham caused pulmonary dysfunction characterized by reduced lung compliance (mean difference −3.36 [95% CI, −5.31 to −1.42] ml/cm H 2 O), an increase in protein levels in bronchoalveolar lavage fluid, histological lung injury inflammation, and endothelial activation. Transfusion of blood stored for up to 42 days resulted in greater protein levels in bronchoalveolar lavage fluid, macrophage infiltration, platelet activation, and depletion of T-lymphocytes in recipient lungs versus 14-day-old blood. Transfusion interacted with cardiopulmonary bypass to increase lung injury in the absence of platelet activation. Conclusions: In this novel large animal model of allogeneic erythrocyte transfusion, pulmonary dysfunction occurs in the absence of any priming event, is increased when combined with other inflammatory stimuli, and is mediated by monocyte activation and T-lymphocyte depletion. What We Already Know about This Topic• Transfusion of allogeneic erythrocytes increases the risk of pulmonary morbidity postcardiac surgery.• Using a novel in vivo porcine model of pulmonary dysfunction, this study determined whether (1) the transfusion of older erythrocytes would cause greater pulmonary dysfunction compared with younger erythrocytes; and (2) erythrocyte transfusion would interact with cardiopulmonary bypass to increase the severity of pulmonary dysfunction. What This Article Tells Us That Is New• Allogeneic erythrocyte transfusion of older erythrocytes causes pulmonary dysfunction, which is characterized by marked neutrophil/macrophage infiltration. Moreover, transfusion interacted with cardiopulmonary bypass to increase lung injury.
In this model, post-cardiopulmonary bypass acute kidney injury is associated with endothelial dysfunction, regional tissue hypoxia, and proximal tubular epithelial cell stress but not acute tubular necrosis. Antagonism of the endothelin-1 A receptor reversed these changes and may represent a therapeutic target for the prevention of post-cardiac surgery acute kidney injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.