While a typical software component has a clearly specified (static) interface in terms of the methods and the input/output types they support, information about the correct sequencing of method calls the client must invoke is usually undocumented. In this paper, we propose a novel solution for automatically extracting such temporal specifications for Java classes. Given a Java class, and a safety property such as "the exception E should not be raised", the corresponding (dynamic) interface is the most general way of invoking the methods in the class so that the safety property is not violated. Our synthesis method first constructs a symbolic representation of the finite state-transition system obtained from the class using predicate abstraction. Constructing the interface then corresponds to solving a partial-information two-player game on this symbolic graph. We present a sound approach to solve this computationally-hard problem approximately using algorithms for learning finite automata and symbolic model checking for branching-time logics. We describe an implementation of the proposed techniques in the tool JIST-Java Interface Synthesis Tool-and demonstrate that the tool can construct interfaces accurately and efficiently for sample Java2SDK library classes.
Software-defined networking (SDN) is revolutionizing the networking industry, but current SDN programming platforms do not provide automated mechanisms for updating global configurations on the fly. Implementing updates by hand is challenging for SDN programmers because networks are distributed systems with hundreds or thousands of interacting nodes. Even if initial and final configurations are correct, naively updating individual nodes can lead to incorrect transient behaviors, including loops, black holes, and access control violations. This paper presents an approach for automatically synthesizing updates that are guaranteed to preserve specified properties. We formalize network updates as a distributed programming problem and develop a synthesis algorithm based on counterexample-guided search and incremental model checking. We describe a prototype implementation, and present results from experiments on real-world topologies and properties demonstrating that our tool scales to updates involving over one-thousand nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.