BackgroundArtemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance (ART-R) has risen rapidly in in Southeast Asia over the last decade. Mutations in kelch13 have been associated with artemisinin (ART) resistance in this region.To explore the power of longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to ART or partner drug resistance, we retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, bracketing the era in which there was a rapid increase in ART-R in this region (2001 -2014). ResultsWe evaluated statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance should increase frequency over this period. After Kelch13-C580Y, the strongest temporal change was seen at a SNP in phosphatidylinositol 4-kinase (PI4K), situated in a pathway recently implicated in the ART-R mechanism. However, other loci exhibit temporal signatures nearly as strong, and warrant further investigation for involvement in ART-R evolution. Through genome-wide association analysis we also identified a variant in a kelch-domain-containing gene on chromosome 10 that may epistatically modulate ART-R. ConclusionsThis analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated loci and improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with ART-R parasites may yield new molecular markers for resistance surveillance and may retard the emergence or spread of ART-R in African parasite populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.