The bacterial thermoalkalophilic lipases that hydrolyze saturated fatty acids at 60 -75°C and pH 8 -10 are grouped as the lipase family I.5. We report here the crystal structure of the lipase from Geobacillus thermocatenulatus, the first structure of a member of the lipase family I.5 showing an open configuration. Unexpectedly, enzyme activation involves large structural rearrangements of around 70 amino acids and the concerted movement of two lids, the ␣6-and ␣7-helices, unmasking the active site. Central in the restructuring process of the lids are both the transfer of bulky hydrophobic residues out of the N-terminal end of the ␣6-helix and the incorporation of short side chain residues to the ␣6 C-terminal end. All these structural changes are stabilized by the Zn 2؉ -binding domain, which is characteristic of this family of lipases. Two detergent molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acids chains. The combination of structural and biochemical studies indicate that the lid opening is not mediated by temperature but triggered by interaction with lipid substrate.
Novel heterofunctional glyoxyl-agarose supports were prepared. These supports contain a high concentration of groups (such as quaternary ammonium groups, carboxyl groups, and metal chelates) that are capable of adsorbing proteins, physically or chemically, at neutral pH as well as a high concentration of glyoxyl groups that are unable to immobilize covalently proteins at neutral pH. By using these supports, a two-step immobilization protocol was developed. In the first step, enzymes were adsorbed at pH 7.0 through adsorption of surface regions, which are complementary to the adsorbing groups on the support, and in the second step, the immobilized derivatives were incubated under alkaline conditions to promote an intramolecular multipoint covalent attachment between the glyoxyl groups on the support and the amino groups on the enzyme surface. These new derivatives were compared with those obtained on a monofunctional glyoxyl support at pH 10, in which the region with the greatest number of lysine residues participates in the first immobilization step. In some cases, multipoint immobilization on heterofunctional supports was much more efficient than what was achieved on the monofunctional support. For example, derivatives of tannase from Lactobacillus plantarum on an amino-glyoxyl heterofunctional support were 20-fold more stable than the best derivative on a monofunctional glyoxyl support. Derivatives of lipase from Geobacillus thermocatenulatus (BTL2) on the amino-glyoxyl supports were two times more active and four times more enantioselective than the corresponding monofunctional glyoxyl support derivative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.