The main question this work aims at answering is: "can morphing attack detection (MAD) solutions be successfully developed based on synthetic data?". Towards that, this work introduces the first synthetic-based MAD development dataset, namely the Synthetic Morphing Attack Detection Development dataset (SMDD). This dataset is utilized successfully to train three MAD backbones where it proved to lead to high MAD performance, even on completely unknown attack types. Additionally, an essential aspect of this work is the detailed legal analyses of the challenges of using and sharing real biometric data, rendering our proposed SMDD dataset extremely essential. The SMDD dataset, consisting of 30,000 attack and 50,000 bona fide samples, is publicly available for research purposes 1 .
The deployment of electroencephalographic techniques for commercial applications has undergone a rapid growth in recent decades. As they continue to expand in the consumer markets as suitable techniques for monitoring the brain activity, their transformative potential necessitates equally significant ethical inquiries. One of the main questions, which arises then when evaluating these kinds of applications, is whether they should be aligned or not with the main ethical concerns reported by scholars and experts. Thus, the present work attempts to unify these disciplines of knowledge by performing a comprehensive scan of the major electroencephalographic market applications as well as their most relevant ethical concerns arising from the existing literature. In this literature review, different databases were consulted, which presented conceptual and empirical discussions and findings about commercial and ethical aspects of electroencephalography. Subsequently, the content was extracted from the articles and the main conclusions were presented. Finally, an external assessment of the outcomes was conducted in consultation with an expert panel in some of the topic areas such as biomedical engineering, biomechatronics, and neuroscience. The ultimate purpose of this review is to provide a genuine insight into the cutting-edge practical attempts at electroencephalography. By the same token, it seeks to highlight the overlap between the market needs and the ethical standards that should govern the deployment of electroencephalographic consumer-grade solutions, providing a practical approach that overcomes the engineering myopia of certain ethical discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.