Limonoids, quinolone alkaloids and chromones have been reported as constituents of Dictyoloma vandellianum Adr. Juss. (Rutaceae). Although those compounds are known for their biological activities, only the anti-inflammatory activity of chromones isolated from the underground parts has been evaluated. There are no studies of the pharmacological properties of the aerial parts of D. vandellianum. The present study was carried out to determine the phytochemical profile and antinociceptive activity of the methanol extract, fractions and isolated compounds of leaves of D. vandellianum. The phytochemical profile was performed by HLPC-DAD-ESIMSn and pure substances obtained were characterized by MS and NMR spectroscopy. The antinociceptive activity was assessed using the formalin assay in mice, and the motor function in the rotarod test. ME and all the fractions obtained from ME produced antinociceptive effects. Among them, the ethyl ether fraction was the most active. Data from HPLC-DAD-ESIMSn showed that the ethyl ether fraction presented 42 compounds. The major compounds isolated from this fraction—gallic acid, methyl gallate and 1,2,6-tri-O-galloyl-β-d-glucopyranose–were tested and produced antinociceptive effects. Gallic acid, methyl gallate and 1,2,6-tri-O-galloyl-β-d-glucopyranose at antinociceptive doses did not affect the motor performance in mice in the rotarod test. This work is the first report of the occurrence of gallotanins in D. vandellianum. In addition, the pharmacological study showed that D. vandellianum leaves present antinociceptive activity, probably induced by gallic acid, methyl gallate and 1,2,6-tri-O-galloyl-β-d-glucopyranose.
Introduction: Given the diversity of secondary metabolites produced by species of the genus Erythroxylum, in addition to the many methods that have already been described in the literature, modern screening and identification methodologies, such as dereplication, represent an efficient and quick strategy compared to the classic techniques linked to natural product research. Objective: The objective of the present study was to determine the phenolic profiles obtained from three species of Erythroxylum (Erythroxylum pauferrense Plowman, Erythroxylum pulchrum A.St.-Hil. and Erythroxylum simonis Plowman) by dereplication using liquid chromatography coupled with ESI-MS n and HRESIMS. Material and Methods: Ethyl acetate and n-butanolic fractions from crude ethanolic extract of Erythroxylum species were analyzed by HPLC-ESI-MS n and HPLC-HRESIMS, in order to identify its corresponding compounds. Experiments were performed in negative ionization mode, and the metabolites were provisionally identified based on deprotonated molecules, molecular formulas, fragmentation patterns and literature data. The corresponding isolated compounds were characterized by 1 H and 13 C NMR spectroscopy.Results: According to the dereplication method, it was possible to establish and compare the phenolic profile of the corresponding species by the assignment of 55 compounds, most of which were first described in these species and among which some were also new to the Erytroxylum genus. Additionally, nine compounds were isolated, including biphenyl-3,3 0 ,4,4 0 -tetraol, where the mass spectral data were not sufficient for their identification, and reported for the first time in the Erythroxylaceae family. Conclusion: This research contributes to the phytochemical knowledge of theErythroxylum genus and demonstrates the importance of the dereplication method regarding the investigation of natural products, enabling accurate identification of the metabolites while avoiding the efforts and material expenses involved in the isolation of known compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.