The present study had the objective to evaluate the effect of blends of KCl and K2SO4 fertilizers and their influence on the yield and the nutritional state of coffee plants, as well as on the chemical composition and quality of the coffee beverage. The experimental design was in randomized blocks with four repetitions and six treatments (T1: 100% KCl; T2: 75% KCl + 25% K2SO4; T3: 50% KCl + 50% K2SO4; T4: 25% KCl + 75% K2SO4; T5: 100% K2SO4; and a control, without application of K). The following analyses were performed: K and Cl content in the leaves and the soil, stocks of Cl in soil, yield, removal of K and Cl with the beans, cup quality of the beverage, polyphenol oxidase activity (PPO), electric conductivity (EC), potassium leaching (KL), the content of phenolic compounds, the content of total sugars (TS), and total titratable acidity (TTA). The stocks of Cl in the soil decreased as the proportion of KCl in the fertilizer was reduced. The fertilization with KCl reduces the cup quality and the activity of the polyphenol oxidase, probably due to the ion Cl. The increase in the application of Cl directly relates to the increase in potassium leaching, electric conductivity, and titratable acidity. Indirectly, these variables indicate damages to the cells by the use of Cl in the fertilizer. The activity of the polyphenol oxidase enzyme and the cup quality indicate that the ion Cl- reduces the quality of the coffee beverage. K content in the leaves was not influenced by the application of blends of K fertilizer while Cl content increased linearly with KCl applied. The application of KCl and K2SO4 blends influenced coffee yield and the optimum proportion was 25% of KCl and 75% of K2SO4. The highest score in the cup quality test was observed with 100% K2SO4.
The aim of this study was to quantify NH3-N losses from conventional, stabilized, slow-release, and controlled-release N fertilizers in a coffee field. The N fertilizers analyzed were prilled urea, prilled urea dissolved in water, ammonium sulfate (AS), ammonium nitrate (AN), urea + Cu + B, urea + adhesive + CaCO3, and urea + NBPT (all with three split applications), as well as blended N fertilizer, urea + elastic resin, urea-formaldehyde, and urea + polyurethane (all applied only once). NH3-N losses (mean of two crop seasons) were statistically higher for urea + adhesive + CaCO3 (27.9% of applied N) in comparison with the other treatments. Loss from prilled urea (23.7%) was less than from urea + adhesive + CaCO3. Losses from urea + NBPT (14.5%) and urea + Cu + B (13.5%) were similar and lower than those from prilled urea. Urea dissolved in water (4.2%) had even lower losses than those treatments, and the lowest losses were observed for AS (0.6%) and AN (0.5%). For the single application fertilizers, higher losses occurred for urea + elastic resin (5.8%), blended N fertilizer (5.5%), and urea + polyurethane (5.2%); and urea-formaldehyde had a lower loss (0.5%). Except for urea + adhesive + CaCO3, all N-fertilizer technologies reduced NH3-N losses compared to prilled urea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.