This paper presents the implementation of a DAG-CNN which aims to classify and verify the authenticity of the offline signatures of 3 users, using the writer-independent method. In order to develop this work, 2 databases (training / validation and testing) were built manually, i.e. the manual collection of the signatures of the 3 users as well as forged signatures made by people not belonging to the base and altered by the same users were done, and signatures of another 115 people were used to create the category of non-members. Once the network is trained, its validation and subsequent testing is performed, obtaining overall accuracies of 99.4% and 99.3%, respectively, showing the features learned by the network and verifying the ability of this configuration of neural network to be used in applications for identification and verification of offline signatures.
In the field of robotics, it is essential to know the work area in which the agent is going to develop, for that reason, different methods of mapping and spatial location have been developed for different applications. In this article, a machine vision algorithm is proposed, which is responsible for identifying objects of interest within a work area and determining the polar coordinates to which they are related to the observer, applicable either with a fixed camera or in a mobile agent such as the one presented in this document. The developed algorithm was evaluated in two situations, determining the position of six objects in total around the mobile agent. These results were compared with the real position of each of the objects, reaching a high level of accuracy with an average error of 1.3271% in the distance and 2.8998% in the angle.
This paper presents the implementation and evaluation of different convolutional neural network architectures focused on food segmentation. To perform this task, it is proposed the recognition of 6 categories, among which are the main food groups (protein, grains, fruit, and vegetables) and two additional groups, rice and drink or juice. In addition, to make the recognition more complex, it is decided to test the networks with food dishes already started, i.e. during different moments, from its serving to its finishing, in order to verify the capability to see when there is no more food on the plate. Finally, a comparison is made between the two best resulting networks, a SegNet with architecture VGG-16 and a network proposed in this work, called Residual Segmentation Convolutional Neural Network or ResSeg, with which accuracies greater than 90% and interception-over-union greater than 75% were obtained. This demonstrates the ability, not only of SegNet architectures for food segmentation, but the use of residual layers to improve the contour of the segmentation and segmentation of complex distribution or initiated of food dishes, opening the field of application of this type of networks to be implemented in feeding assistants or in automated restaurants, including also for dietary control for the amount of food consumed.
This article presents a work oriented to assistive robotics, where a scenario is established for a robot to reach a tool in the hand of a user, when they have verbally requested it by his name. For this, three convolutional neural networks are trained, one for recognition of a group of tools, which obtained an accuracy of 98% identifying the tools established for the application, that are scalpel, screwdriver and scissors; one for speech recognition, trained with the names of the tools in Spanish language, where its validation accuracy reach a 97.5% in the recognition of the words; and another for recognition of the user's hand, taking in consideration the classification of 2 gestures: Open and Closed hand, where a 96.25% accuracy was achieved. With those networks, tests in real time are performed, presenting results in the delivery of each tool with a 100% of accuracy, i.e. the robot was able to identify correctly what the user requested, recognize correctly each tool and deliver the one need when the user opened their hand, taking an average time of 45 seconds in the execution of the application.
This article presents a system focused on the detection of three types of abnormal walk patterns caused by neurological diseases, specifically Parkinsonian gait, Hemiplegic gait, and Spastic Diplegic gait. A Kinect sensor is used to extract the Skeleton from a person during its walk, to then calculate four types of bases that generate different sequences from the 25 points of articulations that the Skeleton gives. For each type of calculated base, a recurrent neural network (RNN) is trained, specifically a Long short-term memory (LSTM). In addition, there is a graphical user interface that allows the acquisition, training, and testing of trained networks. Of the four trained networks, 98.1% accuracy is obtained with the database that was calculated with the distance of each point provided by the Skeleton to the Hip-Center point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.