From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene-based materials and their potential applications as CO 2 conversion to fuel and value-added chemicals.
ABSTRACT.To confirm the significance of reduced inorganic species in nature, it is important to develop sensitive and selective analytical techniques to detect these species in complex environmental matrices. As a model application, we report on the successful use of fractional factorial and Box-Behnken designs in factor screening, optimization and validation of an on-line flow-injection method for the determination of phosphite [P(+III)] in aqueous samples. Fractional factorial results indicated that the combined KI, KIO 3 and ammonium molybdate flow rates, reaction temperature and KIO 3 concentration were the most important single effects. The main interactive effects were between flow rate and reaction temperature, and between sample volume and reaction temperature. The Box-Behnken design further optimized the response with results confirming the significant single effects of flow rate and temperature as well as the interactive effects between flow rate and reaction temperature. Overall, the model from the Box-Behnken design predicted critical values as: flow rate = 0.40 mL·min -1 , reaction temperature = 47 o C, sample volume = 85 μL, KI reagent concentration = 1.06 g·L -1 and KIO 3 reagent concentration = 0.29 g·L -1 . P(+III) determinations in spiked ultra-pure water were performed using the predicted optimized values from the Box-Behnken design and compared favorably with experimental results. In addition, the potential use of such methodology in the development of sensitive laboratory and field-based methods for the detection of a suite of reduced inorganic species in complex matrices was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.