Early detection of at-risk students is essential, especially in the university environment. Moreover, personalized learning has been shown to increase motivation and lower student dropout rates. At present, the average dropout rates among students following courses leading to the award of Spanish university degrees are around 18% and 42.8% for presential teaching and online courses, respectively. The objectives of this study are: (1) to design and to implement a Modular Object-Oriented Dynamic Learning Environment (Moodle) plugin, “eOrientation”, for the early detection of at-risk students; (2) to test the effectiveness of the “eOrientation” plugin on university students. We worked with 279 third-year students following health sciences degrees. A process for extracting information records was also implemented. In addition, a learning analytics module was developed, through which both supervised and unsupervised Machine Learning techniques can be applied. All these measures facilitated the personalized monitoring of the students and the easier detection of students at academic risk. The use of this tool could be of great importance to teachers and university governing teams, as it can assist the early detection of students at academic risk. Future studies will be aimed at testing the plugin using the Moodle environment on degree courses at other universities.
Learning management systems (LMSs) that incorporate hypermedia Smart Tutoring Systems and personalized student feedback can increase self-regulated learning (SRL), motivation, and effective learning. These systems are studied with the following aims: (1) to verify whether the use of LMS with hypermedia Smart Tutoring Systems improves student learning outcomes; (2) to verify whether the learning outcomes will be grouped into performance clusters (Satisfactory, Good, and Excellent); and (3) to verify whether those clusters will group together the different learning outcomes assessed in four different evaluation procedures. Use of the LMS with hypermedia Smart Tutoring Systems was studied among students of Health Sciences, all of whom had similar test results in the use of metacognitive skills. It explained 38% of the variance in student learning outcomes in the evaluation procedures. Likewise, three clusters that grouped the learning outcomes in relation to the variable ‘Use of an LMS with hypermedia Smart Tutoring Systems vs. No use’ explained 60.4% of the variance. Each cluster grouped the learning outcomes in the different evaluation procedures. In conclusion, LMS with hypermedia Smart Tutoring Systems in Moodle increased the effectiveness of student learning outcomes, above all in the individual quiz-type tests. It also facilitated personalized learning and respect for the individual pace of student-learning. Hence, modules for the analysis of supervised, unsupervised and multivariate learning should be incorporated into the Moodle platform to provide teaching tools that will undoubtedly contribute to improvements in student learning outcomes.
HIGHLIGHTS
Learning management systems (LMS) that incorporate hypermedia Smart Tutoring Systems and personalized student feedback can increase self-regulated learning (SRL).
Learning management systems with hypermedia Smart Tutoring Systems increased the effectiveness of student learning outcome.
The use of an LMS with hypermedia Smart Tutoring Systems vs. No use’ explained 60.4% of the variance in student learning outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.