No abstract
Named-Data Networking (NDN) is a candidate next-generation Internet architecture designed to address some limitations of the current IP-based Internet. NDN uses the pull model for content distribution, whereby content is first explicitly requested before being delivered. Efficiency is obtained via routerbased aggregation of closely spaced requests for popular content and content caching in routers. Although it reduces latency and increases bandwidth utilization, router caching makes the network susceptible to new cache-centric attacks, such as content poisoning. In this paper, we propose a ranking algorithm for cached content that allows routers to distinguish good and (likely) bad content. This ranking is based on statistics collected from consumers' actions following delivery of content objects. Experimental results support our assertion that the proposed ranking algorithm can effectively mitigate content poisoning attacks. Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
In contrast to today's IP-based host-oriented Internet architecture, Information-Centric Networking (ICN) emphasizes content by making it directly addressable and routable. Named Data Networking (NDN) architecture is an instance of ICN that is being developed as a candidate next-generation Internet architecture. By opportunistically caching content within the network (in routers), NDN appears to be wellsuited for large-scale content distribution and for meeting the needs of increasingly mobile and bandwidth-hungry applications that dominate today's Internet.One key feature of NDN is the requirement for each content object to be digitally signed by its producer. Thus, NDN should be, in principle, immune to distributing fake (aka "poisoned") content. However, in practice, this poses two challenges for detecting fake content in NDN routers:(1) overhead due to signature verification and certificate chain traversal, and (2) lack of trust context, i.e., determining which public keys are trusted to verify which content. Because of these issues, NDN does not force routers to verify content signatures, which makes the architecture susceptible to content poisoning attacks. This paper explores root causes of, and some cures for, content poisoning attacks in NDN. In the process, it becomes apparent that meaningful mitigation of content poisoning is contingent upon a network-layer trust management architecture, elements of which we construct while carefully justifying specific design choices. This work represents the initial effort towards comprehensive trust management for NDN.
Content-Centric Networking (CCN) is an emerging network architecture designed to overcome limitations of the current IP-based Internet. One of the fundamental tenets of CCN is that data, or content, is a named and addressable entity in the network. Consumers request content by issuing interest messages with the desired content name. These interests are forwarded by routers to producers, and the resulting content object is returned and optionally cached at each router along the path. In-network caching makes it difficult to enforce access control policies on sensitive content outside of the producer since routers only use interest information for forwarding decisions. To that end, we propose an Interest-Based Access Control (IBAC) scheme that enables access control enforcement using only information contained in interest messages, i.e., by making sensitive content names unpredictable to unauthorized parties. Our IBAC scheme supports both hash-and encryption-based name obfuscation. We address the problem of interest replay attacks by formulating a mutual trust framework between producers and consumers that enables routers to perform authorization checks when satisfying interests from their cache. We assess the computational, storage, and bandwidth overhead of each IBAC variant. Our design is flexible and allows producers to arbitrarily specify and enforce any type of access control on content, without having to deal with the problems of content encryption and key distribution. This is the first comprehensive design for CCN access control using only information contained in interest messages.
Content-Centric Networking (CCN) is a communication paradigm that emphasizes content distribution. Named-Data Networking (NDN) is an instantiation of CCN, a candidate Future Internet Architecture. NDN supports human-readable content naming and router-based content caching which lends itself to efficient, secure, and scalable content distribution. Because of NDN's fundamental requirement that each content object must be signed by its producer, fragmentation has been considered incompatible with NDN since it precludes authentication of individual content fragments by routers. The alternative is to perform hop-by-hop reassembly, which incurs prohibitive delays. In this paper, we show that secure and efficient content fragmentation is both possible and even advantageous in NDN and similar content-centric network architectures that involve signed content. We design a concrete technique that facilitates efficient and secure content fragmentation in NDN, discuss its security guarantees and assess performance. We also describe a prototype implementation and compare performance of cutthrough with hop-by-hop fragmentation and reassembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.