In this paper we describe JCLEC, a Java software system for the development of evolutionary computation applications. This system has been designed as a framework, applying design patterns to maximize its reusability and adaptability to new paradigms with a minimum of programming effort. JCLEC architecture comprises three main modules: the core contains all abstract type definitions and their implementation; experiments runner is a scripting environment to run algorithms in batch mode; finally, GenLab is a graphical user interface that allows users to configure an algorithm, to execute it interactively and to visualize the results obtained. The use of JCLEC system is illustrated though the analysis of one case study: the resolution of the 0/1 knapsack problem by means of evolutionary algorithms.
This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.
The suitability of artificial neural networks for estimating kinetic analytical parameters for first-order reactions by using real kinetic data acquired after a short reaction time is demonstrated. The optimal reaction time region and its associated number of inputs are the two key parameters for obtaining as suitable network as possible. Noise in the transient signal was found to affect the performance of the neural network as well as the sue of the training set. The trained network estimated kinetic analytical parameters with a % SEP of 2.14, which is much smaller than those provided by parametric methods such as NLR and PCR.
Biological particles in the air such as pollen grains can cause environmental problems in the allergic population. Medical studies report that a prior knowledge of pollen season severity can be useful in the management of pollen-related diseases. The aim of this work was to forecast the severity of the Poaceae pollen season by using weather parameters prior to the pollen season. To carry out the study a historical database of 21 years of pollen and meteorological data was used. First, the years were grouped into classes by using cluster analysis. As a result of the grouping, the 21 years were divided into 3 classes according to their potential allergenic load. Pre-season meteorological variables were used, as well as a series of characteristics related to the pollen season. When considering pre-season meteorological variables, winter variables were separated from early spring variables due to the nature of the Mediterranean climate. Second, a neural network model as well as a discriminant linear analysis were built to forecast Poaceae pollen season severity, according to the three classes previously defined. The neural network yielded better results than linear models. In conclusion, neural network models could have a high applicability in the area of prevention, as the allergenic potential of a year can be determined with a high degree of reliability, based on a series of meteorological values accumulated prior to the pollen season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.